精英家教网 > 高中数学 > 题目详情

【题目】某校的1000名高三学生参加四门学科的选拔考试,每门试卷共有10道题,每题10分,规定:每门错题成绩记为,错题成绩记为,错题成绩记为,错题成绩记为,在录取时,记为90分,记为80分,记为60分,记为50分.

根据模拟成绩,每一门都有如下统计表:

答错

题数

0

1

2

3

4

5

6

7

8

9

10

频数

10

90

100

150

150

200

100

100

50

49

1

已知选拔性考试成绩与模拟成绩基本吻合.

(1)设为高三学生一门学科的得分,求的分布列和数学期望;

(2)预测考生4门总分为320概率.

【答案】(1)见解析(2)

【解析】

1)由已知可得考生得90分的概率为 ,考生得80分的概率为,考生得60分的概率为,考生得50分的概率为,所以可以得到ξ的分布列及其期望.
2)根据(1)中ξ的分布列可得320=3×90+50=2×90+80+60=4×80.即可得出概率.

(1)由已知得,的分布列为

50

60

80

90

(分);

(2)考生得90分的概率为,考生得80分的概率为,考生得60分的概率为,考生得50分的概率为

因为

所以预测考生4门总分为320概率为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4现从中随机取球,每次只取一球.

若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;

若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且右焦点为

1)求椭圆的方程;

2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;

3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两班各随机抽取10名同学,下面的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数分,为及格;分数分,为高分”,若甲、乙两班的成绩的平均分都是44分,

(1)求的值;

(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人.”在该问题中的1864人全部派遣到位需要的天数为( )

A. 9B. 16C. 18D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,探究零点的个数;

(2)①证明:

②当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由半圆和部分抛物线合成的曲线称为“羽毛球开线”,曲线轴有两个焦点,且经过点

(1)的值;

(2)为曲线上的动点,求的最小值;

(3)且斜率为的直线羽毛球形线相交于点三点,问是否存在实数使得?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,若a1=﹣2an+1an+n2n,则an=(  )

A. n22nB. 1C. 1D. 1

查看答案和解析>>

同步练习册答案