【题目】设函数.
(1)当时,讨论函数的单调性;
(2)若对任意及任意, ,恒有成立,求实数的取值范围.
【答案】(1)详见解析;(2).
【解析】试题分析:
(1)由函数的导函数分类讨论可得:
当时, 在定义域上是减函数;
当时, 在, 上单调递减,在上单调递增;
当时, 在和上单调递减,在上单调递增.
(2)结合(1)的结论可得,构造函数,讨论可得.
试题解析:(1),
当,即时, , 在上是减函数;
当,即时,令,得或;令,得;
当,即时,令,得或;令,得;
综上,当时, 在定义域上是减函数;
当时, 在, 上单调递减,在上单调递增;
当时, 在和上单调递减,在上单调递增.
(2)由(1)知,当时, 在上单调递减,
当时, 有最大值,当时, 有最小值,
对任意,恒有, .
构造函数,则,
, .
函数在上单调增.
, .
科目:高中数学 来源: 题型:
【题目】设集合,若X是的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为的奇(偶)子集.
(1)写出S4的所有奇子集;
(2)求证:的奇子集与偶子集个数相等;
(3)求证:当n≥3时,的所有奇子集的容量之和等于所有偶子集的容量之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示.
(1)求毕业大学生月收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点和直线上的动点,线段的垂直平分线交直线于点,设点的轨迹为曲线.
(I)求曲线的方程;
(II)直线交轴于点,交曲线于不同的两点,点关于轴的对称点为,点关于轴的对称点为,求证:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量的中位数;
(2)将表示为的函数;
(3)根据直方图估计利润不少于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=a,an+1=2an+ (a,λ∈R).
(1)若λ=-2,数列{an}单调递增,求实数a的取值范围;
(2)若a=2,试写出an≥2对任意的n∈N*成立的充要条件,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com