精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,讨论函数的单调性;

(2)若对任意及任意 ,恒有成立,求实数的取值范围.

【答案】(1)详见解析;(2).

【解析】试题分析:

(1)由函数的导函数分类讨论可得:

时, 在定义域上是减函数;

时, 上单调递减,在上单调递增;

时, 上单调递减,在上单调递增.

(2)结合(1)的结论可得,构造函数,讨论可得.

试题解析:(1)

,即时, 上是减函数;

,即时,令,得;令,得

,即时,令,得;令,得

综上,当时, 在定义域上是减函数;

时, 上单调递减,在上单调递增;

时, 上单调递减,在上单调递增.

(2)由(1)知,当时, 上单调递减,

时, 有最大值,当时, 有最小值,

对任意,恒有 .

构造函数,则

.

函数上单调增.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为正三角形,,,,平面.

)若为棱的中点求证平面;

)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆.

(1)若抛物线的焦点在圆上,且和圆 的一个交点,求

(2)若直线与抛物线和圆分别相切于点,求的最小值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若X是的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0,若X的容量为奇(偶数,则称X为的奇(偶子集.

(1写出S4的所有奇子集;

(2求证:的奇子集与偶子集个数相等;

(3求证:当n≥3时,的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示.

(1)求毕业大学生月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点和直线上的动点,线段的垂直平分线交直线于点,设点的轨迹为曲线.

I)求曲线的方程;

II)直线轴于点,交曲线于不同的两点,点关于轴的对称点为,点关于轴的对称点为,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

)判断函数的单调性,并说明理由;

)若,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=a,an+1=2an (a,λ∈R).

(1)若λ=-2,数列{an}单调递增,求实数a的取值范围;

(2)若a=2,试写出an≥2对任意的n∈N*成立的充要条件,并证明你的结论.

查看答案和解析>>

同步练习册答案