精英家教网 > 高中数学 > 题目详情
19.设复数z=i(1+i)(i为虚数单位),则复数z的实部为-1.

分析 直接利用复数代数形式的乘法运算化简得答案.

解答 解:∵z=i(1+i)=-1+i,
∴复数z的实部为-1.
故答案为:-1.

点评 本题考查复数代数形式的乘法运算,考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(0,-1),N(2,3).如果直线MN垂直于直线ax+2y-3=0,那么a等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和AA1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:CN∥平面AMP;
(Ⅲ)试判断直线BC1与PA能否垂直.若能垂直,求出PB的值;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若复数z满足|z-2i|=1(i为虚数单位),则|z|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数z满足|z|=1(i为虚数单位),则|z-2i|的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+ax2(x>0),g(x)=bx,其中a,b是实数.
(1)若$a=-\frac{1}{2}$,求f(x)的最大值;
(2)若b=2,且直线$y=g(x)-\frac{3}{2}$是曲线y=f(x)的一条切线,求实数a的值;
(3)若a<0,且$b-a=\frac{1}{2}$,函数h(x)=f(x)-g(2x)有且只有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{3+i}{1-i}$,则$\overline{z}$的模长为(  )
A.$\sqrt{5}$B.5C.4D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案