精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是正方形, 平面分别为的中点,且.

(1)求证:平面平面

(2)求证:平面平面

(3)求三棱锥与四棱锥的体积之比.

【答案】(1)证明过程详见解析(2)证明过程详见解析;(3)1:4

【解析】

(1)由三角形中位线定理可得由正方形的性质可得由线面平行的判定定理可得平面平面从而可得结果;(2)由线面垂直的性质证明,正方形的性质可得结合可得平面从而可得平面平面 ;(3)求出,则得到平面求出,即为点到平面的距离,根据三棱锥的体积公式求出体积得到比值.

(1)分别为的中点,

又∵四边形是正方形,

在平面外, 在平面内,

平面平面

又∵都在平面内且相交,

∴平面平面.

(2)证明:由已知平面

平面.

平面.

∵四边形为正方形,∴

平面

中,∵分别为的中点,

平面.

平面∴平面平面.

(3)解:∵平面,四边形为正方形,,则.

平面,且

即为点到平面的距离,

=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数且点(4,2)在函数f(x)的图象上.

(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;

(2)求不等式f(x)<1的解集;

(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的值.

)求函数的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在△ABC中,已知AB=15,BC=14,CA=13.将△ABC沿BC边上的高AD折成一个如图②所示的四面体A﹣BCD,使得图②中的BC=11.

(1)求二面角B﹣AD﹣C的平面角的余弦值;
(2)在四面体A﹣BCD的棱AD上是否存在点P,使得 =0?若存在,请指出点P的位置;若不存在,请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(2)求圆C1与圆C2的公共弦的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个随机变量x,y的取值表为

x

0

1

3

4

y

2.2

4.3

4.8

6.7

若x,y具有线性相关关系,且 = x+2.6,则下列四个结论错误的是(
A.x与y是正相关
B.当x=6时,y的估计值为8.3
C.x每增加一个单位,y增加0.95个单位
D.样本点(3,4.8)的残差为0.56

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位建立坐标系,已知直线l的极坐标方程为2ρcosθ+ρsinθ=3,曲线C的参数方程为 (α为参数).
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)P(1,1),设直线l与曲线C相交于A、B两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为为短轴的一个端点, 若点在椭圆上,则点称为点的一个“椭点”.

1)求椭圆的标准方程;

(2)若直线与椭圆相交于两点,且两点的“椭点”分别为为直径的圆经过坐标原点试求的面积.

查看答案和解析>>

同步练习册答案