【题目】在如图所示的几何体中,四边形是正方形, 平面, 分别为的中点,且.
(1)求证:平面平面;
(2)求证:平面平面;
(3)求三棱锥与四棱锥的体积之比.
【答案】(1)证明过程详见解析(2)证明过程详见解析;(3)1:4
【解析】
(1)由三角形中位线定理可得,由正方形的性质可得,,由线面平行的判定定理可得平面, 平面,从而可得结果;(2)由线面垂直的性质证明,正方形的性质可得,结合,可得平面,从而可得平面平面 ;(3)求出,则,得到平面,求出,即即为点到平面的距离,根据三棱锥的体积公式求出体积得到比值.
(1)∵分别为的中点,
∴,
又∵四边形是正方形,
∴,∴,
∵在平面外, 在平面内,
∴平面, 平面,
又∵都在平面内且相交,
∴平面平面.
(2)证明:由已知平面,
∴平面.
又平面,∴.
∵四边形为正方形,∴,
又,∴平面,
在中,∵分别为的中点,
∴,∴平面.
又平面,∴平面平面.
(3)解:∵平面,四边形为正方形,,则.
∵平面,且,
∴即为点到平面的距离,
∴=
科目:高中数学 来源: 题型:
【题目】已知函数且点(4,2)在函数f(x)的图象上.
(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;
(2)求不等式f(x)<1的解集;
(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在△ABC中,已知AB=15,BC=14,CA=13.将△ABC沿BC边上的高AD折成一个如图②所示的四面体A﹣BCD,使得图②中的BC=11.
(1)求二面角B﹣AD﹣C的平面角的余弦值;
(2)在四面体A﹣BCD的棱AD上是否存在点P,使得 =0?若存在,请指出点P的位置;若不存在,请给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(2)求圆C1与圆C2的公共弦的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个随机变量x,y的取值表为
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
若x,y具有线性相关关系,且 = x+2.6,则下列四个结论错误的是( )
A.x与y是正相关
B.当x=6时,y的估计值为8.3
C.x每增加一个单位,y增加0.95个单位
D.样本点(3,4.8)的残差为0.56
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位建立坐标系,已知直线l的极坐标方程为2ρcosθ+ρsinθ=3,曲线C的参数方程为 (α为参数).
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)P(1,1),设直线l与曲线C相交于A、B两点,求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,点为短轴的一个端点, ,若点在椭圆上,则点称为点的一个“椭点”.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于、两点,且两点的“椭点”分别为,以为直径的圆经过坐标原点,试求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com