精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数底数.

(1)当时,求函数在点处的切线方程;

(2)讨论函数的单调性,并写出相应的单调区间;

(3)已知,若函数对任意都成立,求的最大值.

【答案】(1)(2)时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为(3)

【解析】

试题分析:(1)根据导数几何意义可求切线斜率:,再根据点斜式求切线方程为,即(2)利用导数求函数单调性,从导函数出发,研究其零点情况:时,,无零点,函数上单调递增;当时,由时,单调递减;时,单调递增.(3)不等式恒成立问题转化为函数最值问题:,当时,函数无最小值;当时,函数最小值为0,,此时;当时,,最后研究函数最大值

试题解析:解:(1)当时, 2

函数在点处的切线方程为

4分

2

时,,函数上单调递增; 6

时,由

时,单调递减;时,单调递增.

综上,当时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为 9

3)由(2)知,当时,函数上单调递增,

不可能恒成立; 10分

时,,此时 11

时,由函数对任意都成立,得

13

由于,令,得

时,单调递增;时,单调递减.

,即的最大值为

此时 16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnax﹣ (a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+ + …+ ≥ln (e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是正方形的四棱锥P﹣ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B﹣PC﹣D的大小为 时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是(

A.607
B.328
C.253
D.007

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若将其图象向右平移 个单位后得到的图象关于原点对称,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,点B是其下顶点,过点B的直线交椭圆C于另一点A(A点在轴下方),且线段AB的中点E在直线上.

(1)求直线AB的方程;

(2)若点P为椭圆C上异于A、B的动点,且直线AP,BP分别交直线于点M、N,证明:OM·ON为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)数列满足:

1)若数列是等差数列,求证:数列是等差数列;

2)若数列都是等差数列,求证:数列从第二项起为等差数列;

3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在[a,b]上的函数f(x)=x3﹣3x2+1的值域为[﹣3,1],则b﹣a的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mex﹣x﹣1(其中e为自然对数的底数,),若f(x)=0有两根x1 , x2且x1<x2 , 则函数y=(e ﹣e )( ﹣m)的值域为

查看答案和解析>>

同步练习册答案