【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为, .求:
(1)tan(α+β)的值;
(2)α+2β的大小.
【答案】(1)-3;(2) α+2β=.
【解析】试题分析:(1)根据题意,由三角函数的定义可得 与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出 的值,再根据的取值范围,可得出的取值范围,进而可得出的值.
试题解析:15.解:(1)∵,从而.
又∵,∴. …
利用同角三角函数的基本关系可得sin2(α﹣β)+cos2(α﹣β)=1,且,
解得 由条件得cosα=,cosβ=.
∵ α,β为锐角,
∴ sinα==,sinβ==.
因此tanα==7,tanβ==.
(1) tan(α+β)===-3.
(2) ∵ tan2β===,
∴ tan(α+2β)===-1.
∵ α,β为锐角,∴ 0<α+2β<,∴ α+2β=
科目:高中数学 来源: 题型:
【题目】若圆上有四个不同的点到直线的距离为2,则的取值范围是( )
A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知∠A1,∠A2,…,∠An为凸多边形的内角,且lg sin A1+lg sin A2+…+lg sin An=0,则这个多边形是( )
A. 正六边形 B. 梯形
C. 矩形 D. 含锐角的菱形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是矩形的四棱锥PABCD中,PA⊥平面ABCD,PA = AB = 2,BC = 4, E是PD的中点,
(1)求证: 平面EAC;
(2)求证:平面PDC⊥平面PAD;
(3)求多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.
(1)求 和的值,并根据频率分布直方图估计这组数据的众数;
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆:的左顶点为,右焦点为,上顶点为,下顶点为,若直线与直线的交点为.
(1)求椭圆的标准方程;
(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆于两点,证明:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com