分析 (1)利用正弦、余弦定理,化简可得cb=b2+c2-a2,即可求角A的大小;
(2)在图(2)中连接DP,由折叠可知AD=PD,根据等边对等角可得∠BAP=∠APD,又∠BDP为三角形ADP的外角,若设∠BAP为θ,则有∠BDP为2θ,再设AD=PD=x,根据正弦定理建立函数关系,根据正弦函数的图象与性质得出正弦函数的最大值,进而得出x的最小值,即为AD的最小值.
解答 解:(1)∵$\frac{tanA}{tanB}=\frac{2c-b}{b}$,
∴$\frac{sinAcosB}{cosAsinB}$=$\frac{2c-b}{b}$,
利用正弦、余弦定理,化简可得cb=b2+c2-a2,
∴cosA=$\frac{1}{2}$,
∴A=60°;
(2)b=c=1,A=60°,△ABC是等边三角形,显然A,P两点关于折线DE对称
连接DP,图(2)中,可得AD=PD,则有∠BAP=∠APD,
设∠BAP=θ,∠BDP=∠BAP+∠APD=2θ,
再设AD=DP=x,则有DB=1-x,
在△ABC中,∠APB=180°-∠ABP-∠BAP=120°-θ,
∴∠BPD=120°-2θ,又∠DBP=60°,
在△BDP中,由正弦定理知$\frac{1-x}{sin(120°-2θ)}=\frac{x}{sin60°}$
∴x=$\frac{\sqrt{3}}{2sin(120°-2θ)+\sqrt{3}}$,
∵0°≤θ≤60°,
∴0°≤120°-2θ≤120°,
∴当120°-2θ=90°,即θ=15°时,sin(120°-2θ)=1.
此时x取得最小值$\frac{\sqrt{3}}{2+\sqrt{3}}$=2$\sqrt{3}$-3,且∠ADE=75°.
则AD的最小值为2$\sqrt{3}$-3.
点评 此题考查了折叠的性质,三角形的外角性质,正弦定理,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.
科目:高中数学 来源: 题型:选择题
A. | -1≤m<$\frac{4}{5}$ | B. | m≤-1或m>1 | C. | m=-1或m>1 | D. | m=-1或0<m<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 由圆的性质类比推出球的有关性质 | |
B. | 由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180° | |
C. | 某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分 | |
D. | 蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件 | |
B. | 命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0” | |
C. | 已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题 | |
D. | 从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | B. | [-$\frac{\sqrt{3}}{2}$,1] | C. | [0,1+$\frac{\sqrt{3}}{2}$] | D. | [0,$\sqrt{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com