精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足$\frac{tanA}{tanB}=\frac{2c-b}{b}$.
(1)求角A的大小;
(2)若b=c=1,在边AB,AC上分别取D,E两点,将△ADE沿直线DE折,使顶点A正好落在边BC上,求线段AD长度的最小值.

分析 (1)利用正弦、余弦定理,化简可得cb=b2+c2-a2,即可求角A的大小;
(2)在图(2)中连接DP,由折叠可知AD=PD,根据等边对等角可得∠BAP=∠APD,又∠BDP为三角形ADP的外角,若设∠BAP为θ,则有∠BDP为2θ,再设AD=PD=x,根据正弦定理建立函数关系,根据正弦函数的图象与性质得出正弦函数的最大值,进而得出x的最小值,即为AD的最小值.

解答 解:(1)∵$\frac{tanA}{tanB}=\frac{2c-b}{b}$,
∴$\frac{sinAcosB}{cosAsinB}$=$\frac{2c-b}{b}$,
利用正弦、余弦定理,化简可得cb=b2+c2-a2
∴cosA=$\frac{1}{2}$,
∴A=60°;
(2)b=c=1,A=60°,△ABC是等边三角形,显然A,P两点关于折线DE对称
连接DP,图(2)中,可得AD=PD,则有∠BAP=∠APD,
设∠BAP=θ,∠BDP=∠BAP+∠APD=2θ,
再设AD=DP=x,则有DB=1-x,
在△ABC中,∠APB=180°-∠ABP-∠BAP=120°-θ,
∴∠BPD=120°-2θ,又∠DBP=60°,
在△BDP中,由正弦定理知$\frac{1-x}{sin(120°-2θ)}=\frac{x}{sin60°}$
∴x=$\frac{\sqrt{3}}{2sin(120°-2θ)+\sqrt{3}}$,
∵0°≤θ≤60°,
∴0°≤120°-2θ≤120°,
∴当120°-2θ=90°,即θ=15°时,sin(120°-2θ)=1.
此时x取得最小值$\frac{\sqrt{3}}{2+\sqrt{3}}$=2$\sqrt{3}$-3,且∠ADE=75°.
则AD的最小值为2$\sqrt{3}$-3.

点评 此题考查了折叠的性质,三角形的外角性质,正弦定理,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{\frac{x}{{e}^{x-1}}.x≥0}\end{array}\right.$,若方程[f(x)]2+mf(x)-m(m+1)=0有四个不等的实数根,则m的取值范围是(  )
A.-1≤m<$\frac{4}{5}$B.m≤-1或m>1C.m=-1或m>1D.m=-1或0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$cos(\frac{π}{6}+x)=\frac{1}{3}$,则$cos(\frac{5π}{6}-x)$的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下面四个推理不是合情推理的是(  )
A.由圆的性质类比推出球的有关性质
B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°
C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分
D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用分析法证明:欲证①A>B,只需证②C<D,这里②是①的(  )
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列结论:
①在频率分布直方图中,小矩形的高表示频率;
②平均数、众数与中位数从不同的角度描述了一组数据的集中趋势;
③从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了;
④将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;
⑤设有一个线性回归方程$\stackrel{∧}{y}$=3-5x,变量x增加1个单位时,y平均增加5个单位.
其中不正确结论的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC的中点.
(1)求证:平面BDE⊥平面SAC;
(2)若SA=2,求三棱锥A-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件
B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
C.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin2x,将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移$\frac{\sqrt{3}}{2}$个单位移,得到函数g(x)的图象,则当x∈[0,$\frac{π}{2}$]时,函数g(x)的值域为(  )
A.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]B.[-$\frac{\sqrt{3}}{2}$,1]C.[0,1+$\frac{\sqrt{3}}{2}$]D.[0,$\sqrt{3}$]

查看答案和解析>>

同步练习册答案