精英家教网 > 高中数学 > 题目详情
正方体中,点的中点,所成角的余弦值为(   )
A.B.C.D.
D

试题分析:如下图,建立空间直角坐标系

不妨设正方体的棱长为2,则,所以,所以,故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,PA⊥底面ABCDACCD,∠DAC=60°,ABBCACEPD的中点,FED的中点.
 
(1)求证:平面PAC⊥平面PCD
(2)求证:CF∥平面BAE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求证:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列四个正方体中,AB为正方体的两个顶点,MNP分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正三棱柱ABCA1B1C1中,AB=1.若二面角CABC1的大小为60°,则点C到平面C1AB的距离为(  ).
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面,直线,且有,则下列四个命题正确的个数为(  )
①若;      ②若
③若;      ④若
A.B.C.D.

查看答案和解析>>

同步练习册答案