分析 由题意,画出图形,得到△ABC是等边三角形,F是正三角形ABC的中心,延长AF交BC于E,连DE,可求DF=AF=BF=CF=2$\sqrt{3}$.
解答 解:因为,∠BAC=∠BAD=∠CAD=$\frac{π}{3}$,且AB=AC=6,AD=4,
∴BC=6,
由余弦定理,
BD2=62+42-2×6×4×cos60°=28,BD=CD=2$\sqrt{7}$.
设F是正三角形ABC的中心,延长AF交BC于E,连DE,则AE=3$\sqrt{3}$,AF=2$\sqrt{3}$,如图
DE=$\sqrt{C{D}^{2}-E{C}^{2}}$=$\sqrt{19}$,
cos∠DAE=$\frac{A{D}^{2}+A{E}^{2}-D{E}^{2}}{2AD×AE}$=$\frac{24}{24\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
由余弦定理,DF2=12+16-2×2$\sqrt{3}$×$\frac{4}{\sqrt{3}}$=12,
∴DF=AF=BF=CF=2$\sqrt{3}$,
∴F是球心,球半径=2$\sqrt{3}$.
点评 本题考查了四面体的外接球的半径;关键是利用余弦定理求出DF=AF=BF=CF=2$\sqrt{3}$,得到球的半径.
科目:高中数学 来源: 题型:选择题
A. | (x-2)2+(y-1)2=1 | B. | (x-2)2+(y+1)2=1 | C. | (x+2)2+(y-1)2=1 | D. | (x+2)2+(y+1)2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com