精英家教网 > 高中数学 > 题目详情
精英家教网如图,在多面体ABCDE中,CD⊥平面ABC,BE⊥平面ABC,且AC=BC=CD=1,AB=
2

(1)求直线AD与平面ABC所成角的大小;
(2)求证:AC⊥平面BCDE;
(3)在AB上是否存在点F,使CF⊥AE?若存在,说明F点的位置,并证明;若不存在,说明理由.
分析:(1)以C为坐标原点,以CA,CB,CD分别为X,Y,Z轴正方向建立空间坐标系,分别求出几何体中各顶点的坐标,进而求出直线AD的方向向量与平面ABC的法向量,代入向量夹角公式,即可求出直线AD与平面ABC所成角的大小;
(2)由已知中AC=BC=1,AB=
2
.由勾股定理易得AC⊥BC.又由CD⊥平面ABC,结合线面垂直的性质得到DC⊥AC,结合线面垂直的判定定理,即可得到AC⊥平面BCDE;
(3)在取AB的中点F,连接CF,根据等腰三角形“三线合一”的性质及BE⊥平面ABC,结合线面垂直的判定及性质,易得到CF⊥平面ABE,再由线面垂直的性质即可得到答案.
解答:解:∵AC=BC=1,AB=
2
,∴AC⊥BC,
又由CD⊥平面ABC,可得CA,CB,CD两两垂直
以C为坐标原点,以CA,CB,CD分别为X,Y,Z轴正方向建立空间坐标系
则C(0,0,0),A(1,0,0),B(0,1,0),D(0,0,1),
(1)则
AD
=(-1,0,1),易得
CD
=(0,0,1)为平面ABC的一个法向量
设直线AD与平面ABC所成角为θ
则sinθ=|
AD
CD
|
AD
|•|
CD
|
|
=
2
2

故θ=45°
故直线AD与平面ABC所成角为45;
(2)由已知CD⊥平面ABC,
∴CD⊥AC,又由AC=BC=1,AB=
2
,∴AC⊥BC,
又∵AC∩BC=C
故AC⊥平面BCDE;
(3)取AB的中点F,即为所求,
连接CF,
由AC=BC,∴CF⊥AB
又∵BE⊥平面ABC,∴BE⊥CF
又∵AB∩BE=B
∴CF⊥平面ABE
又∵AE?平面ABE
∴CF⊥AE
点评:本题考查的知识点是直线与平面所成的角,直线与平面垂直的判定,其中熟练掌握空间直线与平面垂直、平行的判定、性质、定义、几何特征,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案