【题目】如图,在平面直角坐标系xoy中,F为椭圆E:的右焦点,过F作两条相互垂直的直线AB,CD,与椭圆E分别交于A,B和点C,D.
(1)当AB=时,求直线AB的方程;
(2)直线AB交直线x=3于点M,OM与CD交于P,CO与椭圆E交于Q,求证:OM∥DQ.
【答案】(1) (2)见证明
【解析】
(1)由题意可设直线AB方程y=k(x-2),则直线CD的方程为,分别与椭圆方程联立,利用弦长公式可得出|AB|,|CD|,根据AB=解得k,即可得直线AB方程.(2)将直线AB与直线x=3联立,解得M,可得直线OM方程,将直线OM与直线CD联立,解得P点坐标,将直线CD与椭圆联立,利用根与系数的关系、中点坐标公式可得线段CD的中点坐标,得到与点P重合.又点O是CQ的中点,由三角形中位线即可证明结论.
(1)由题意可设直线的方程为:,,.则直线的方程为:.
联立,化为:,
,,
则.
同理可得:.
,.
化为:,解得.
直线的方程为:.
(2)证明:设直线的方程为:,则直线的方程为:,,
联立,解得.
可得直线的方程:,
联立,解得.
联立,化为:,
,可得线段的中点坐标,与点重合.
又点是的中点,,即.
科目:高中数学 来源: 题型:
【题目】医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每10g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元,若病人每餐至少需要35单位蛋白质和40单位铁质。试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(1)求的取值范围;
(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知两学习小组各有位同学,每位同学在两场讲座任意选听一场.若组人选听《生活趣味数学》,其余人选听《校园舞蹈赏析》;组人选听《生活趣味数学》,其余人选听《校园舞蹈赏析》.
(1)若从此人中任意选出人,求选出的人中恰有人选听《校园舞蹈赏析》的概率;
(2)若从两组中各任选人,设为选出的人中选听《生活趣味数学》的人数,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面为矩形,侧棱PA⊥底面ABCD,且PA=AD,E,F分别是线段PA,PD的中点,H在线段AB上.
(1)求证:PC⊥AF;
(2)若平面PBC∥平面EFH,求证H是AB的中点;
(3)若AD=4,AB=2,求点D到平面PAC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知且,设命题:函数在上单调递减,命题:对任意实数,不等式恒成立.
(1)写出命题的否定,并求非为真时,实数的取值范围;
(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=asinx﹣ cosx(a∈R)的图象经过点( ,0).
(1)求f(x)的最小正周期;
(2)若x∈[ , ],求f(x)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)= (a>0,且a≠1)的值域为(﹣∞,+∞),则实数a的取值范围是( )
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S表示的值为( )
A.a0+a1+a2+a3
B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3
D.a0x3+a1x2+a2x+a3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com