精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,四边形是边长为2的菱形,为正三角形,与平面所成的角为,平面平面.

1)求证:

2)求平面与平面所成锐二面角的余弦值.

【答案】1)证明见解析;(2

【解析】

(1)由题意过为垂足,连接,可得到平面,根据与平面所成的角为,根据边角关系可得到,从而有平面,再根据四边形是边长为2的菱形可得,所以有平面,即可证明

(2)为原点,以的方向分别为轴,轴,轴的正方向.建立空间直角坐标系,写出相关点的坐标,求出平面与平面的法向量,利用数量积求夹角即可.

证明,(1)过为垂足,连接

因为平面平面,平面平面

所以平面,

所以与平面所成的角,即

因为.所以


,所以的中点.

因为为正三角形.所以,

,所以平面

所以

因为四边形是边长为2的菱形,所以

.所以平面

所以.

解:(2)以为原点,以的方向

分别为轴,轴,轴的正方向.建立空间直角坐标系

所以

设平面的法向量为,则,即

,则

根据(1),平面,平面的法向量为,则

故平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,则方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的左,右焦点,椭圆上一点满足轴,.

1)求椭圆的标准方程;

2)过的直线交椭圆两点,当的内切圆面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面中点,中点,是线段上一动点.

1)当中点时,求证:平面平面

2)当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面分别是,的中点,点在线段上,.

(1)求证:平面

(2)若平面平面,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A1A2…A10(如A2表示身高(单位:cm)在[150155内的人数].图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是

A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,为了更好地了解学生线上学习的情况,某兴趣小组在网上随机抽取了100名学生对其线上学习满意情况进行调查,其中男女比例为23,其中男生有24人满意,女生有12人不满意.

1)完成列联表,并回答是否有95%把握认为“线上学习是否满意与性别有关”

满意

不满意

合计

男生

女生

合计

2)从对线上学习满意的学生中,利用分层抽样抽取6名学生,再在6名学生中抽取3名,记抽到的女生人数为,求的分布列和数学期望.

参考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

.072

2.706

3.842

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,河南省郑州市的房价依旧是郑州市民关心的话题.总体来说,二手房房价有所下降,相比二手房而言,新房市场依然强劲,价格持续升高.已知销售人员主要靠售房提成领取工资.现统计郑州市某新房销售人员一年的工资情况的结果如图所示,若近几年来该销售人员每年的工资总体情况基本稳定,则下列说法正确的是(

A.月工资增长率最高的为8月份

B.该销售人员一年有6个月的工资超过4000

C.由此图可以估计,该销售人员2020678月的平均工资将会超过5000

D.该销售人员这一年中的最低月工资为1900

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面.过点做四棱锥的截面,分别交于点,已知的中点.

)求证:平面

)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案