精英家教网 > 高中数学 > 题目详情
2.双曲线$\frac{y^2}{9}-\frac{x^2}{4}=1$的渐近线方程为y=±$\frac{3}{2}$x.

分析 根据题意,由双曲线的标准方程分析可得其焦点在y轴上,可以求出a、b的值,进而由双曲线的渐近线方程分析可得答案.

解答 解:根据题意,双曲线的标准方程为$\frac{y^2}{9}-\frac{x^2}{4}=1$,
则其焦点在y轴上,且a=$\sqrt{9}$=3,b=$\sqrt{4}$=2,
故其渐近线方程y=±$\frac{3}{2}$x;
故答案为:y=±$\frac{3}{2}$x.

点评 本题考查双曲线的简单几何性质,解题的关键是依据双曲线的方程,分析焦点的位置,求出a、b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+3|x-a|+2(a∈R).
(1)当a=0时,讨论f(x)的单调性;
(2)求f(x)在区间[0,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列说法:
(1)命题“若a、b都是奇数,则a+b是偶数”的否命题是“若a、b都不是奇数,则a+b不是偶数”;
(2)命题“如果A∩B=A,那么A∪B=B”是真命题;
(3)“x≠1或y≠2”是“x+y≠3”的必要不充分条件.
那么其中正确的说法有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:∅⊆{0},q:3∈{1,2}由它们构成“p∨q”,“p∧q”,“¬p”三个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题:?x∈R,则2x2+2x+$\frac{1}{2}$<0的否定是(  )
A.?x∈R,则2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,则2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,则2x02+2x0+$\frac{1}{2}$<0D.?x∈R,则2x2+2x+$\frac{1}{2}$>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线x2-y2=4,直线l:y=k(x-1),试在下列条件下,求实数k的取值范围:
(1)直线l与双曲线有两个公共点,
(2)直线l与双曲线有且只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{m}$=1的离心率为2,则m=24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.近年来我国电子商务行业迎来发展的新机遇.2016年双十一期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.7,对服务的好评率为0.8,其中对商品和服务都做出好评的交易为120次.
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.005的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的观测值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:
对服务好评对服务不满意合计
对商品好评a=120b=40160
对商品不满意c=20d=2040
合计14060n=200

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}cosα\\ y=sinα\end{array}\right.$(α为参数),M为C1上的动点,P点满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,点P的轨迹为曲线C2
(Ⅰ)求C2的普通方程;
(Ⅱ) 设点(x,y)在曲线C2上,求x+2y的取值范围.

查看答案和解析>>

同步练习册答案