函数f(x+1)=x2-2x+1的定义域是[-2,0],则f(x)的单调递减区间是____.
科目:高中数学 来源:重庆西南师大附中2011届高三第一次月考理科数学试题 题型:044
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.
(1)试求f(0)的值;
(2)判断f(x)的单调性并证明你的结论;
(3)若不等式f[(t-2)(|x-4|-|x+4|)]>f(t2-4t+13)对t∈[4,6]恒成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源:山东省潍坊市三县2012届高三上学期12月联考数学理科试题 题型:044
已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l截圆(x+1)2+y2=2的弦长为2,求a;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=,则函数f[f(x)]的定义域为( )
A.{x|x≠1} B.{x|x≠2}
C.{x|x≠1或x≠2} D.{x|x≠1且x≠2}
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=,则函数f[f(x)]的定义域为( )
A.{x|x≠1} B.{x|x≠2}
C.{x|x≠1或x≠2} D.{x|x≠1且x≠2}
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一第二学期期中考试数学试卷(解析版) 题型:解答题
已知函数f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二问中,∵xÎ[0, ],∴2x-Î[-,],
∴当2x-=-,即x=0时,f(x)min=-,
当2x-=, 即x=时,f(x)max=1
第三问中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用构造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的减区间是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴当2x-=-,即x=0时,f(x)min=-, ……………………8分
当2x-=, 即x=时,f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com