分析 熟练的根据余弦定理和正弦定理,进行计算即可.
解答 解:b=1,△ABC的周长为3+$\sqrt{3}$,
∴a+c=2+$\sqrt{3}$,
根据余弦定理,a2=b2+c2-2bccosA,
∴a2=(c-1)2,
解得a=$\frac{1+\sqrt{3}}{2}$,c=$\frac{3+\sqrt{3}}{2}$,
根据正弦定理,$\frac{a}{sinA}=2R$=$\frac{\frac{1+\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{1+\sqrt{3}}{\sqrt{3}}$=1+$\frac{\sqrt{3}}{3}$
根据正弦定理,$\frac{a-b+2016c}{sinA-sinB+2016sinC}$=$\frac{a-b+2016c}{(a-b+20106)•\frac{1}{2R}}$=2R=1+$\frac{\sqrt{3}}{3}$,
故答案为:1+$\frac{\sqrt{3}}{3}$.
点评 本题考查了正弦定理余弦定理,关键是掌握定理,熟练的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | |$\overrightarrow{a}$|$\overrightarrow{a}$=$\overrightarrow{a}$2 | B. | ($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2$\overrightarrow{b}$2 | C. | $\overrightarrow{a}$($\overrightarrow{a}$•$\overrightarrow{b}$)=$\overrightarrow{b}$•$\overrightarrow{a}$2 | D. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com