精英家教网 > 高中数学 > 题目详情
15.设集合A={x|x2-x-2=0},B={-2,0,2},则A∩B=(  )
A.ϕB.{2}C.{0}D.{-2}

分析 求出A中方程的解确定出A,找出A与B的交集即可.

解答 解:由A中方程变形得:(x-2)(x+1)=0,
解得:x=-1或x=2,即A={-1,2},
∵B={-2,0,2},
∴A∩B={2},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=lnx 图象与函数$g(x)=2\sqrt{x}$图象在交点处切线方程相同,则m的值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=f(x)是单调递增函数,其反函数是y=f-1(x).
(1)若y=x2-1(x>$\frac{1}{2}$),求y=f-1(x)并写出定义域M;
(2)对于(1)的y=f-1(x)和M,设任意x1∈M,x2∈M,x1≠x2,求证:|f-1(x1)-f-1(x2)|<|x1-x2|;
(3)求证:若y=f(x)和y=f-1(x)有交点,那么交点一定在y=x上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1$($a>\sqrt{3}$)上一动点 P到其两焦点F1,F2的距离之和为4,则实数a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=ax3+2bx2-4x在x=-2与$x=\frac{2}{3}$处取得极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定点A(2,0),圆x2+y2=1上有一个动点Q,若AQ的中点为P.
(1)求动点P的轨迹方程;
(2)设P的轨迹为曲线C,过点$B(\frac{1}{2},\frac{1}{2})$作曲线C的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.正方体ABCD-A′B′C′D′棱长为1
(1)证明:面A′BD∥面B′CD′
(2)求点B′到面A′BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow{b}$=(cosx,$\sqrt{3}$sin 2x),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,x∈R.
(I)求函数f(x)的最小正周期;
(Ⅱ)当x∈[$-\frac{π}{6}$,$\frac{π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2cos4x+2sin2x•cos2x+2$\sqrt{3}$sinx•cosx-1,x∈R.
(I)求函数f(x)的最小正周期;
(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c,若f(π-$\frac{A}{2}$)=-1,a=2,求BC边上的高的最大值.

查看答案和解析>>

同步练习册答案