精英家教网 > 高中数学 > 题目详情

称满足以下两个条件的有穷数列阶“期待数列”:
;②.
(1)若数列的通项公式是
试判断数列是否为2014阶“期待数列”,并说明理由;
(2)若等比数列阶“期待数列”,求公比q及的通项公式;
(3)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;

(1)是;
(2)
(3)

解析试题分析:(1)判断数列是不是为2014阶“期待数列”,就是根据定义计算,是不是一个为0,一个为1,如是则是“期待数列”,否则就不是;(2)数列中等比数列,因此是其前和,故利用前前项和公式,分进行讨论,可很快求出;(3)阶等差数列是递增数列,即公差,其和为0,故易知数列前面的项为负,后面的项为正,即前项为正,后项为正,因此有,这两式用基本量或直接相减可求得,因此通项公式可得.
试题解析:(1)因为,          2分
所以


所以数列为2014阶“期待数列”           4分
(2)①若,由①得,,得,矛盾.     5分
,则由①=0,得,     7分
由②得
所以,.数列的通项公式是
            9分
(3)设等差数列的公差为>0.
,∴,∴
>0,由,         11分
由①、②得,     13分
两式相减得,, ∴
,得
∴数列的通项公式是.  16分
考点:(1)三角函数的诱导公式与新定义的理解;(2)等比数列的前和公式与通项公式;(3)等差数列的前和公式与通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等比数列{an}中,a2=32,a8,an+1<an.
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相应的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*pq垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,满足8Sna+4an+3(n∈N*),且a1a2a7依次是等比数列{bn}的前三项.
(1)求数列{an}及{bn}的通项公式;
(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足,又.
(1)求实数k的值;
(2)求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设无穷等比数列的公比为q,且表示不超过实数的最大整数(如),记,数列的前项和为,数列的前项和为.
(Ⅰ)若,求
(Ⅱ)若对于任意不超过的正整数n,都有,证明:.
(Ⅲ)证明:)的充分必要条件为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,,若函数,在点处切线过点
(1)求证:数列为等比数列;
(2)求数列的通项公式和前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,为其前项和,且
(1)求数列的通项公式;(2)求证:数列是等比数列;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{}的前项和为,已知对任意的,点,均在函数的图像上.
(Ⅰ)求的值;
(Ⅱ)记求数列的前项和.

查看答案和解析>>

同步练习册答案