精英家教网 > 高中数学 > 题目详情
3.某同学用“五点法”画函数$f(x)=2sin(2x-\frac{π}{3})+1$在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象时,列表并填入了部分数据,如表:
2x-$\frac{π}{3}$-$\frac{4}{3}$π-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2}{3}$π
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象;
(2)求f(x)的最小值及取最小值时x的集合;
(3)求f(x)在$x∈[0,\frac{π}{2}]$时的值域.

分析 (1)先把数据补全,利用描点法能在给出的直角坐标系中,画出f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.
(2)利用正弦函数的图象及性质能求出函数$f(x)=2sin(2x-\frac{π}{3})+1$的最小值及取最小值时x的集合.
(3)当$x∈[0,\frac{π}{2}]$时,$2x-\frac{π}{3}∈[-\frac{π}{3},\frac{2π}{3}]$,从而$sin(2x-\frac{π}{3})∈[{-\frac{{\sqrt{3}}}{2},1}]$,由此能求出f(x)在$x∈[0,\frac{π}{2}]$时的值域.

解答 解:(1)数据补全如下表:

2x-$\frac{π}{3}$-$\frac{4π}{3}$-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2π}{3}$
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)$\sqrt{3}+1$1-113$\sqrt{3}+1$
…(3分)
故f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象如图所示.

…(6分)
(2)当$2x-\frac{π}{3}=-\frac{π}{2}+2kπ,k∈Z$,
即$x=kπ-\frac{π}{12},k∈Z$时,f(x)取最小值-1.
取最小值时x的集合为$\{x|x=kπ-\frac{π}{12},k∈Z\}$.…(8分)
(3)当$x∈[0,\frac{π}{2}]$时,$2x-\frac{π}{3}∈[-\frac{π}{3},\frac{2π}{3}]$,…(9分)
故$sin(2x-\frac{π}{3})∈[{-\frac{{\sqrt{3}}}{2},1}]$…(11分)
所以$f(x)∈[{-\sqrt{3}+1,3}]$,即f(x)在$x∈[0,\frac{π}{2}]$时的值域为$[{-\sqrt{3}+1,3}]$.…(12分)

点评 本题考查三角函数的图象的画法,考查三角函数的最小值及取最小值时x的集合的求法,考查三角函数的值域的求法,涉及到三角函数的图象及性质等知识点,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设a是实数,对函数f(x)=x2-2x+a2+3a-3和抛物线C:y2=4x,有如下两个命题:p:函数f(x)的最小值小于0;q:抛物线y2=4x上的动点$M(\frac{a^2}{4},a)$到焦点F的距离大于2.已知“?p”和“p∧q”都为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求a及这部分学生成绩的样本平均数$\overline x$(同一组数据用该组的中点值作为代表);
(2)若该校高二共有1000名学生,试估计这次测验中,成绩在105分以上的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对?x∈R,mx2+mx+1>0恒成立,则m的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$f(x)=\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}\right.$,则f[f(1)]=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=cos(2x+φ)的图象向右平移$\frac{π}{3}$个单位,得到的函数为奇函数,则|φ|的最小值(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班有60名学生,学号为1~60号,现从中抽取5位同学参加一项活动,用系统抽样的方法确定的抽样号码可能为(  )
A.5,10,15,20,25B.5,12,31,39,57C.6,16,26,36,46D.6,18,30,42,54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为3.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为$\frac{2}{3}$,则抛物线C2的方程为(  )
A.x2=33yB.x2=33yC.x2=8yD.x2=16y

查看答案和解析>>

同步练习册答案