精英家教网 > 高中数学 > 题目详情
已知180°<α<360°,则化简
1-cosα
1+cosα
-
1+cosα
1-cosα
=(  )
分析:利用同角三角函数基本关系式,各项分母有理化,再计算.
解答:解:
1-cosα
1+cosα
-
1+cosα
1-cosα
=
(1-cosα)2
(1+cosα)(1-cosα)
-
(1+cosα)2
(1-cosα)(1+cosα)
=
1-cosα
|sinα|
-
1+cosα
|sinα|
=
-2cosα
-sinα
=
2cosα
sinα

故选D.
点评:本题考查同角三角函数基本关系式,三角函数值在各象限的符号.要做到牢记公式,并熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
1
2
,短轴的一个顶点与两个焦点构成面积为
3
的三角形.
(1)求椭圆的方程;
(2)过点P(1,1)做两条倾斜角分别为a1,a2的不同的直线l1,l2,分别交椭圆与A,B,C,D,且|PA|•|PB|=|PC|•|PD|,求证:a1+a2=180°.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计得到如下频率分布表:
分组 频数 频率
[180,210) 4 0.1
[210,240) 8 s
[240,270) 12 0.3
[270,300) 10 0.25
[300,330) n t
 (1)求分布表中s,t的值;
(2)某兴趣小组为研究每天自主学习的时间与学习成绩的相关性,需要在这40名学生中按时间用分层抽样的方法抽取20名学生进行研究,问应抽取多少名第一组的学生?
(3)已知第一组的学生中男、女生均为2人.在(2)的条件下抽取第一组的学生,求既有男生又有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2,-1),
b
=(3,-2,-1)
,则向量
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分 利用时间不充分 总计
走读生 50 25 75
住宿生 10 15 25
总计 60 40 100
是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

参考列表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查,根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:[0,30),[30,60),[60,90),[90,120),[120,150),[150,180),[180,210),[210.240),得到频率分布直方图如图,已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人.
(1)求n的值并求有效学习时间在[90,120)内的频率;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,下列2×2列联表,问:是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
利用时间充分 利用时间不充分 合计
走读生 50 a
75
75
住校生 b 15
25
25
合计
60
60
40 n
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

参考列表:

P(K2≥k0
0.50 0.40 0.25 0.15 0.10 0.05 0.025

k0
0.455 0.708 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

同步练习册答案