精英家教网 > 高中数学 > 题目详情

【题目】保护环境,防治环境污染越来越得到人们的重视,某企业在现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为.现为了减少大气污染,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后,当日产量时,每日生产总成本

1)求的值;

2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?

【答案】1k2 2)日产量为4吨时,每吨产品的利润最大,最大利润为26万元.

【解析】

1)求出除尘后的函数解析式,利用当日产量时,总成本,代入计算得

2)求出每吨产品的利润,利用基本不等式求解即可.

解:(1)由题意,除尘后

代入得解得

(2)由(1)值,总利润

则每吨产品的利润

当且仅当,即时取等号,

所以除尘后日产量为吨时,每吨产品的利润最大,最大利润为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若的顶点,且的欧拉线的方程为.

1)求外心(外接圆圆心)的坐标;

2)求顶点的坐标.

(注:如果三个顶点坐标分别为,则重心的坐标是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上最大值;

(3)若时,函数恰有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ADAA11AB2,点E是线段AB中点.

1)证明:D1ECE

2)求二面角D1ECD的大小的余弦值;

3)求A点到平面CD1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面.为线段上的点.

(I)证明:

(Ⅱ)若的中点,求与平面所成的角的正弦值;

(Ⅲ)若满足,求二面角正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数fx)在处有极值,求函数fx)的最大值;

2)是否存在实数b,使得关于x的不等式上恒成立?若存在,求出b的取值范围;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数只有一个极值点,则k的取值范围为

A.B.C.D.

查看答案和解析>>

同步练习册答案