精英家教网 > 高中数学 > 题目详情
3.求下列各式的值:
(1)2$\sqrt{3}$×$\root{3}{3\frac{3}{8}}$-$\sqrt{12}$;
(2)lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$.

分析 (1)根据指数幂的运算性质计算即可.
(2)根据对数的运算性质计算即可,

解答 解:(1)原式=2$\sqrt{3}$×$\root{3}{(\frac{3}{2})^{3}}$-2$\sqrt{3}$=2$\sqrt{3}$×$\frac{3}{2}$-2$\sqrt{3}$=$\sqrt{3}$,
(2)原式=2+lg2+lg5+5-$(\frac{1}{3})^{3×\frac{1}{3}}$=2+1+5-$\frac{1}{3}$=$\frac{23}{3}$.

点评 本题考查了指数和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,在四面体ABCD中,AB=CD=2,AB与CD所成的角为45°,点E,F,G,H分别在棱EC,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)求不等式的解集:-x2+4x+5<0
(2)解关于x的不等式:x2+(1-a)x-a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个学豆、10个学豆、20个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲第一关、第二关、第三关的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选手选择继续闯关的概率均为$\frac{1}{2}$,且各关之间闯关成功互不影响
(1)求选手获得5个学豆的概率;
(2)求选手甲第一关闯关成功且所得学豆为零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式:
(1)$\frac{x+3}{1-2x}$≥0
(2)$\frac{5}{{x_{\;}^2-10x+21}}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题:“?x∈R,x2+2x+m≤0”的否定是?x∈R,x2+2x+m>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知二次函数f(x)=ax2-x+c(x∈R)的值域为[0,+∞),则$\frac{2}{a}$+$\frac{2}{c}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“若x2<2,则$|x|<\sqrt{2}$”的逆否命题是“若|x|≥$\sqrt{2}$,则x2≥2”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,设$a=f({{{log}_4}7}),b=f({{{log}_{\frac{1}{2}}}3})$,c=f(0.20.6),则a,b,c的大小关系是(  )
A.c<b<aB.b<c<aC.b<a<cD.a<b<c

查看答案和解析>>

同步练习册答案