精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.H为PD上的动点,EH与平面PAD所成最大角的正切值为
6
2

(1)证明:AE⊥PD;
(3)求异面直线PB与AC所成的角的余弦值;
(4)若AB=2,求三棱锥P-AEF的体积.
分析:(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论.
(2)EH与平面PAD所成最大角的正切值为
6
2
可求出PA=AB,然后以AE为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,求出异面直线PB与AC所在向量的夹角的余弦值,从而求出所求;
(3)将三棱锥P-AEF的体积转化成三棱锥F-AEP,然后利用三棱锥的体积公式即可求出.
解答:证明:(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.
因为E为BC的中点,所以AE⊥BC.
又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.精英家教网
而PA?平面PAD,AD?平面PAD且PA∩AD=A,
所以AE⊥平面PAD.又PD?平面PAD,
所以AE⊥PD.
(2)设AB=2,H为PD上任意一点,连接AH,EH.
由(Ⅰ)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=
3

所以当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大.
此时 tan∠EHA=
AE
AH
=
3
AH
=
6
2

因此 AH=
2
.又AD=2,所以∠ADH=45°,
所以PA=2.
以AE为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(-1,
3
,0),C(1,
3
,0)
P(0,0,2)则
PB
=(-1,
3
,-2),
AC
=(1,
3
,0)
cos<
PB
AC
>=
PB
AC
PB•AC
=
2
4
2
=
2
4

∴异面直线PB与AC所成的角的余弦值
2
4

(3)VP-AEF=VF-PAE=
1
3
×
1
2
×2×
3
×
1
2
=
3
6
点评:本小题主要考查直线与平面的位置关系、线线的位置关系、异面直线所成角及其几何体的体积等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案