精英家教网 > 高中数学 > 题目详情
(2013•崇明县二模)已知椭C:
x2
a2
+
y2
b2
=1
(a>b>0),以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6

(1)求椭圆C的标准方程;
(2)若过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.
分析:(1)利用以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6
,建立方程,可求椭圆的几何量,从而可得椭圆C的标准方程;
(2)当斜率l不存在时,过点Q(1,
1
2
)引曲线C的弦AB不被点Q平分;当直线l的斜率为k时,设方程与椭圆方程联立,利用韦达定理及过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,建立方程,即可求得结论.
解答:解:(1)∵以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6

∴2a+2c=4+2
3
3
2
a=c

∴a=2,c=
3

b=
a2-c2
=1

∴椭圆方程为
x2
4
+y2=1

(2)当直线l的斜率不存在时,过点Q(1,
1
2
)引曲线C的弦AB不被点Q平分;
当直线l的斜率为k时,l:y-
1
2
=k(x-1)与椭圆方程联立,消元可得(1+4k2)x2-4k(2k-1)x+(1-2k)2-4=0
∵过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,
4k(2k-1)
1+4k2
=2

∴解得k=-
1
2

1
4
+
1
4
<1

∴点Q在椭圆内
∴直线l:y-
1
2
=-
1
2
(x-1),即l:y=-
1
2
x+1.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查弦中点问题,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•崇明县二模)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中抽取200件,对其等级系数进行统计分析,得到频率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
则在所抽取的200件日用品中,等级系数X=1的件数为
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,n∈N*,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和数列{bn}的前n项和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)设函数 f(x)=
2x      (x≤0)
log2x (x>0)
,函数y=f[f(x)]-1的零点个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知函数f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,则f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D为斜边AB的中点,则 
AB
CD
=
-1
-1

查看答案和解析>>

同步练习册答案