精英家教网 > 高中数学 > 题目详情

已知集合A={x|x2-4x+3<0},B={x||x-3|≤1},
(1)请根据集合的交集、并集、补集等运算性质的特征,设计一种集合运算:△,可以使A△B={x|1<x<2}并用集合的符号语言来表示A△B;
(2)按(1)中所确定的运算,求出B△A.

解:(1)因为集合A={x|x2-4x+3<0},
B={x||x-3|≤1},
所以A={x|1<x<3},
B={x|2≤x≤4} …
又A△B={x|1<x<2},
所以运算:△表示:
A△B={x|x∈A且x∉B};…
(2)根据上述性质知:
B△A={x|3≤x≤4}…
分析:(1)先根据二次不等式及绝对值不等式的解法化简集合A,B.再根据集合的交集、并集、补集等运算性质的特征,设计一种集合运算:△,可以使A△B={x|1<x<2}并用集合的符号语言来表示A△B即可;
(2)按(1)中所确定的运算,求出新定义的B△A即可.
点评:本小题主要考查不等式的解法,交、并、补集的混合运算等基础知识,考查探究问题的能力、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<1},B={x|x(x-2)≤0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≥1},B={x|x>2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

同步练习册答案