精英家教网 > 高中数学 > 题目详情
一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )
A.①②
B.①③
C.②④
D.③④
【答案】分析:本题可把正方体沿着某条棱展开到一个平面成为一个矩形,连接此时的对角线AC1即为所求最短路线.
解答:解:由点A经正方体的表面,按最短路线爬行到达顶点C1位置,共有6种展开方式,若把平面ABA1和平面BCC1展到同一个平面内,
在矩形中连接AC1会经过BB1的中点,故此时的正视图为②.
若把平面ABCD和平面CDD1C1展到同一个平面内,在矩形中连接AC1会经过CD的中点,此时正视图会是④.
其它几种展开方式对应的正视图在题中没有出现或者已在②④中了,
故选C
点评:本题考查空间几何体的展开图与三视图,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i∈N*),设黑白蚂蚁都爬完2007段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)已知ABCD-A1B1C1D1为单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是AA1→A1D1→…,黑蚂蚁爬行的路线是AB→BB1→…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i∈N*),设黑白蚂蚁都爬完2007段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是(  )
A.
2
B.1C.0D.
3
精英家教网

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省广州六中高二(下)期中数学试卷(解析版) 题型:选择题

ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i∈N*),设黑白蚂蚁都爬完2007段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是( )

A.
B.1
C.0
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西大学附中高二(上)10月月考数学试卷(理科)(解析版) 题型:填空题

已知ABCD-A1B1C1D1为单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是AA1→A1D1→…,黑蚂蚁爬行的路线是AB→BB1→…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是   

查看答案和解析>>

同步练习册答案