精英家教网 > 高中数学 > 题目详情

【题目】如图所示,有一块矩形空地ABCD,AB=2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.

(1)请确定入口F的选址范围;
(2)设商业区的面积为S1 , 绿化区的面积为S2 , 商业区的环境舒适度指数为 ,则入口F如何选址可使得该商业区的环境舒适度指数最大?

【答案】
(1)解:以A为原点,AB所在直线为x轴,建立如图所示平面直角坐标系,

则A(0,0),

设F(2,2a)(0<2a<4),则AF的中点为(1,a),斜率为a,

而EG⊥AF,故EG的斜率为

则EG的方程为

令x=0,得

令y=0,得

,得

即入口F的选址需满足BF的长度范围是 (单位:km)


(2)解:因为

故该商业区的环境舒适度指数

所以要使 最大,只需S1最小.

令f'(a)=0,得 (舍),

a,f'(a),f(a)的情况如下表:

a

2﹣

(2﹣

1

f'(a)

0

+

f(a)

极小

故当 ,即入口F满足 km时,该商业区的环境舒适度指数最大


【解析】(1)以A为原点,AB所在直线为x轴,建立如图所示平面直角坐标系,则A(0,0),设F(2,2a)(0<2a<4),则AF的中点为(1,a),斜率为a,EG⊥AF,求出EG的方程,列出不等式即可求出;(2)因为 ,该商业区的环境舒适度指数 ,所以要使 最大,只需S1最小.转化为求其最小值.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

(1)求关于的线性回归方程;

(2)通过(1)中的方程,求出关于的回归方程;

(3)用所求回归方程预测到2010年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线相交于AB两点.

1)求证:

2)当的面积等于时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3+x2﹣ax+3a在区间[1,2]上单调递增,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.

(1)求A,ω,φ的值;
(2)设θ为锐角,且f(θ)=﹣ ,求f(θ﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)证明函数f(x)在(﹣1,+∞)上为单调递增函数;
(2)若x∈[0,2],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥D﹣ABC及其正视图和侧视图如右图所示,且顶点A,B,C,D均在球O的表面上,则球O的表面积为(
A.32π
B.36π
C.128π
D.144π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,△BCD为正三角形,AD=AB=2, ,AC与BD中心O点,将△ACD沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为60°.
(1)求证:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.

查看答案和解析>>

同步练习册答案