精英家教网 > 高中数学 > 题目详情
8.求下列函数的导数:
(1)y=xe-x
(2)y=ln(3x-2);
(3)y=$\frac{2-sinx}{cosx}$;
(4)f(x)=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$.

分析 根据导数的运算法则和复合函数的求导法则求导即可.

解答 解:(1)y′=e-x-xe-x
(2)y′=$\frac{1}{3x-2}$(3x-2)′=$\frac{3}{3x-2}$;
(3)y′=($\frac{2-sinx}{cosx}$)′=$\frac{(2-sinx)′cosx-(2-sinx)cosx′}{co{s}^{2}x}$=$\frac{-co{s}^{2}x+2sinx-si{n}^{2}x}{co{s}^{2}x}$=$\frac{-1+2sinx}{co{s}^{2}x}$
(4)f(x)=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$=$\frac{1+\sqrt{x}}{1-x}$+$\frac{1-\sqrt{x}}{1-x}$=$\frac{2}{1-x}$,
∴f′(x)=$\frac{2}{(1-x)^{2}}$

点评 本题考查了导数的运算法则和复合函数的求导法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为$\frac{3\sqrt{3}}{2}$,底面是边长为$\sqrt{3}$的正三角形,则三棱柱ABC-A1B1C1的外接球体积为$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=$\sqrt{sinx}$+$\sqrt{-cosx}$,且0≤x≤2π,则y的范围是[1,$\sqrt{2+\sqrt{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列函数中,对于定义域内的任意两个不同的x1,x2,都满足$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)的有②③.
①y=${x}^{\frac{1}{2}}$;②y=2x;③y=x2;④y=lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若代数式2x2+3x+7的值是12,则代数式,4x2+6x-10的值应是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若-1<a<2,-2<b<1,则a-3b的取值范围是(-4,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin(α-$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sin(α+$\frac{π}{3}$)等于(  )
A.$\frac{3-4\sqrt{3}}{10}$B.$\frac{-3+4\sqrt{3}}{10}$C.$\frac{-4+3\sqrt{3}}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线y=kx+4与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1有两个不同的交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一元二次方程x2-2ix-5=0的根的情况是(  )
A.有两个不等的实根B.有一个实根和一个虚根
C.有一对共轭的虚根D.有两个不共轭的虚根

查看答案和解析>>

同步练习册答案