精英家教网 > 高中数学 > 题目详情

【题目】为椭圆的左、右焦点,动点的坐标为,过点的直线与椭圆交于两点.

(3)的坐标;

(4)若直线的斜率之和为0,求的所有整数值.

【答案】(1);(2).

【解析】

试题分析:(1)根据条件中给出的椭圆的标准方程即可求解;(2)设出直线的方程,将其与椭圆方程联立后利用韦达定理结合条件斜率之和为0可得到的函数表达式,求得其范围后即可求解.

试题解析(1)由椭圆的标准方程是,可知(2)当直线的斜率不存在时,由对称性可知当直线的斜率存在时,设直线的斜率为

由题意得,直线的斜率为,直线的斜率为

直线的斜率为,由题意得

化简整理得

将直线方程代入椭圆方程,化简整理得

由韦达定理得,代入并化简整理得

,从而

时,

时,,故的所有整数值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-x3+2x2+2x,若存在满足0≤x0≤3的实数x0,使得曲线yf(x)在点(x0f(x0))处的切线与直线xmy-10=0垂直,则实数m的取值范围是(  )

A. [6,+∞)B. (-∞,2]

C. [2,6]D. [5,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,若点在椭圆C上,则点称为点M的一个椭点”.

1)求椭圆C的标准方程;

2)若直线与椭圆C相交于AB两点,且AB两点的椭点分别为PQ,以PQ为直径的圆经过坐标原点,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数为偶函数。

1)求的解析式;

2)若方程有三个不同的实数根,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从AF的圆弧.

1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;

2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,.

1)求证:

2)若对于任意恒成立,求的取值范围;

3)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线)的两个顶点,点是双曲线上异于的一点,为坐标原点,射线交椭圆于点,设直线的斜率分别为.

(1)若双曲线的渐近线方程是,且过点,求的方程;

(2)在(1)的条件下,如果,求△的面积;

(3)试问:是否为定值?如果是,请求出此定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数满足不等式

命题q:关于不等式对任意的恒成立.

1)若命题为真命题,求实数的取值范围;

2)若“为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案