【题目】设,为椭圆的左、右焦点,动点的坐标为,过点的直线与椭圆交于,两点.
(3)求,的坐标;
(4)若直线,,的斜率之和为0,求的所有整数值.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)若为偶函数,求的值并写出的增区间;
(Ⅱ)若关于的不等式的解集为,当时,求的最小值;
(Ⅲ)对任意的,,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=-x3+2x2+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是( )
A. [6,+∞)B. (-∞,2]
C. [2,6]D. [5,6]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点,若点在椭圆C上,则点称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、是双曲线:(,)的两个顶点,点是双曲线上异于、的一点,为坐标原点,射线交椭圆:于点,设直线、、、的斜率分别为、、、.
(1)若双曲线的渐近线方程是,且过点,求的方程;
(2)在(1)的条件下,如果,求△的面积;
(3)试问:是否为定值?如果是,请求出此定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数满足不等式;
命题q:关于不等式对任意的恒成立.
(1)若命题为真命题,求实数的取值范围;
(2)若“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com