精英家教网 > 高中数学 > 题目详情
已知△ABC三个顶点的坐标分别为A(0,0),B(2,2),C(0,c),若
AB
BC
,那么c的值是(  )
A、-1B、3C、-3D、4
考点:平面向量数量积的运算
专题:平面向量及应用
分析:先求出
AB
BC
,根据
AB
BC
,便有
AB
BC
=0
,进行数量积的运算即可求出c.
解答: 解:
AB
=(2,2),
BC
=(-2,c-2)

AB
BC

AB
BC
=-4+2C-4=0

∴c=4.
故选D.
点评:考查两非零向量垂直的充要条件,以及向量数量积的坐标运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

-
π
12
弧度角在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-
1
100
(x-60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-
99
100
(100-x)2+
294
5
(100-x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1),(2),该方案是否具有实施价值?

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,首项a1=1,点(an,an+1)(n=1,2,3,…)均在直线y=2x+1上
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应缴费为(单位:元)(  )
A、2[x+1]
B、2([x]+1)
C、2{x}
D、{2x}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x是有理数
0,x是无理数
,下列命题是真命题的是
 
(只填命题序号).
①函数f(x)是偶函数;②对任意x∈R,f(x+
2
)=f(x);
③对任意x∈R,f(x+2)=f(x);
④对任意x,y∈R,f(x+y)=
1
2
(f(x)+f(x));
⑤若存在x,y∈R,使得f(x+y)=f(x)+f(y),则x,y都为无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人随机地向如图所示的正三角形及其外接圆区域内部设计(不包括三角形及其外接圆的边界),则针孔到正三角形内部(不包括边界)的概率为(  )
A、
3
3
B、
3
π
C、
3
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+1-a在(-1,1)上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设学生的考试成绩为G,则下面的代码的算法目的是(  )
A、计算50个学生的平均成绩
B、计算50个学生中不及格的人数
C、计算50个学生中及格的人数
D、计算50个学生的总成绩

查看答案和解析>>

同步练习册答案