【题目】已知函数为自然对数的底数).
⑴当时,求曲线在点,处的切线方程;
⑵讨论的单调性;
⑶当时,证明.
【答案】(1)(2)见解析(3)证明见解析
【解析】
(1)当时,,利用导数的几何意义求得切线方程;
(2)对函数进行求导得,对分和两种情况进行分类讨论,研究导数值的正负,从而得到函数的单调区间;
(3)证明不等式成立等价于证明成立,再构造函数进行证明.
(1)当时,.
所以,
所以,又.
所以曲线在点处的切线方程为,
即.
(2)易得().
①当时,,此时在上单调递增;
②当时,令,得.
则当时,,此时在上单调递增;
当时,,此时在上单调递减.
综上所述,当时,函数在区间上单调递增;
当时,函数在区间上单调递增,在区间上单调递减.
(3)由(2)知,当时,在处取得最大值,
即
,
则等价于,即,
即.(※)
令,则.不妨设(),
所以().
从而,当时,;当时,,
所以函数在区间上单调递增;在区间上单调递减.
故当时.
所以当时,总有.
即当时,不等式(※)总成立,
故当时,成立.
科目:高中数学 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.
(1)求和的参数方程;
(2)已知射线,将逆时针旋转得到,且与交于两点, 与交于两点,求取得最大值时点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,,平面平面ABC,点D在线段BC上,且,F是线段AB的中点,点E是PD上的动点.
(1)证明:.
(2)当EF//平面PAC时,求三棱锥C-DEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上的最大值为,最小值为,记,;
(1)求实数、的值;
(2)若不等式对任意恒成立,求实数的范围;
(3)对于定义在上的函数,设,,用任意将划分成个小区间,其中,若存在一个常数,使得不等式恒成立,则称函数为在上的有界变差函数,试证明函数是在上的有界变差函数,并求出的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,.已知函数,.
(Ⅰ)求的单调区间;
(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,
(i)求证:在处的导数等于0;
(ii)若关于x的不等式在区间上恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2) 已知点的极坐标为,求的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com