精英家教网 > 高中数学 > 题目详情

【题目】已知,.

(1)f(x)的最小正周期和最大值;(2)讨论f(x)上的单调性.

【答案】(1)最小正周期为π,最大值为(2)f(x)上单调递增;在上单调递减

【解析】分析:(1)先跟据.求出表达式,再结合三角函数的二倍角,降幂公式,辅助角公式化简即可;(2)求在上的单调性.先求出2x的取值范围,再结合正弦函数的图像即可得到单调性.

详解:(1)f(x)=sinsin xcos2x

=cos xsin x (1+cos 2x)

sin 2x (1+cos 2x)=sin 2xcos 2x=sin

因此f(x)的最小正周期为π,最大值为.

(2)x时,0≤2x≤π,从而

0≤2x,即x时,f(x)单调递增,

≤2x≤π,即x时,f(x)单调递减.

综上可知,f(x)上单调递增;在上单调递减

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知锐角ABC中,内角所对应的边分别为,且满足:,则的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和为,且满足,数列满足,且..

(1)求数列的通项公式;

(2)求数列的前项的

(3)将数列的项相间排列构成新数列,设新数列的前项和为,若对任意正整数n都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,圆心为 ,定点 为圆 上一点,线段 上一点 满足 ,直线 上一点 ,满足
(Ⅰ)求点 的轨迹 的方程;
(Ⅱ) 为坐标原点, 是以 为直径的圆,直线 相切,并与轨迹 交于不同的两点 .当 且满足 时,求 面积 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,.

(1)f(x)的最小正周期和最大值;(2)讨论f(x)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{ 满足 .
(1)求证:数列 是等比数列;
(2)若数列 是单调递增数列,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,直线 交于 两点,且 ,其中 为坐标原点.
(1)求抛物线 的方程;
(2)已知点 的坐标为(-3,0),记直线 的斜率分别为 ,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河南省新乡市2017届高三上学期第一次调研】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为

1)求椭圆和抛物线的方程;

2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直

线的斜率的取值范围.

查看答案和解析>>

同步练习册答案