分析 将曲线方程化简,可得曲线表示以C(0,1)为圆心、半径r=2的圆的上半圆.再将直线方程化为点斜式,可得直线经过定点A(2,5)且斜率为k.作出示意图,设直线与半圆的切线为AD,半圆的左端点为B(-2,1),当直线的斜率k大于AD的斜率且小于或等于AB的斜率时,直线与半圆有两个相异的交点.由此利用直线的斜率公式与点到直线的距离公式加以计算,可得实数k的取值范围.
解答 解:化简曲线y=1+$\sqrt{4-{x^2}}$,得x2+(y-1)2=4(y≥1)
∴曲线表示以C(0,1)为圆心,半径r=2的圆的上半圆.
∵直线kx-y-2k+5=0可化为y-5=k(x-2),
∴直线经过定点A(2,5)且斜率为k.
又∵半圆y=1+$\sqrt{4-{x^2}}$与直线kx-y-2k+5=0有两个相异的交点,
∴设直线与半圆的切线为AD,半圆的左端点为B(-2,1),
当直线的斜率k大于AD的斜率且小于或等于AB的斜率时,
直线与半圆有两个相异的交点.
由点到直线的距离公式,当直线与半圆相切时满足$\frac{|-1-2k+5|}{\sqrt{{k}^{2}+1}}$=2,
解之得k=$\frac{3}{4}$,即kAD=$\frac{3}{4}$.
又∵直线AB的斜率kAB=1,∴直线的斜率k的范围为k∈$(\frac{3}{4},1]$.
故答案为$(\frac{3}{4},1]$.
点评 本题给出直线与半圆有两个不同的交点,求直线的斜率k的取值范围.着重考查了直线的方程、圆的方程、点到直线的距离公式和直线与圆的位置关系等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,3) | B. | $(\root{3}{3},2)$ | C. | $(\root{3}{4},2)$ | D. | $(\root{3}{2},3)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x2+y2=1 | B. | x2+y2=16 | C. | x2+y2=9 | D. | x2+y2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(0,\frac{1}{e})$ | B. | $(-∞,\frac{1}{e})$ | C. | (-∞,-e) | D. | $(\frac{1}{e},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com