ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬
£¨1£©ÉèÍÖÔ²CÉϵĵ㣨
3
£¬
3
2
£©µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ4£¬Ð´³öÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê
£¨2£©ÉèKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µã£¬ÇóÏ߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³Ì
£¨3£©ÉèµãPÊÇÍÖÔ²CÉϵÄÈÎÒâÒ»µã£¬¹ýÔ­µãµÄÖ±ÏßLÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±Ö±ÏßPM£¬PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM£¬KPNÊÔ̽¾¿kPM•KPNµÄÖµÊÇ·ñÓëµãP¼°Ö±ÏßLÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²CÉϵĵã(
3
£¬
3
2
)
µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ4£¬¿ÉÖª2a=4£¬ÇóµÃa£®°Ñµã(
3
£¬
3
2
)
ºÍa´úÈëÍÖÔ²µÄ±ê×¼·½³Ì£¬¿ÉÇóµÃb£®½ø¶ø¿ÉµÃÍÖÔ²µÄ±ê×¼·½³ÌºÍ½¹µã×ø±ê£®
£¨2£©ÉèKF1µÄÖеãΪB£¨x£¬y£©ÔòµãK£¨2x+1£¬2y£©£¬°ÑKµÄ×ø±ê´úÈëÍÖÔ²µÄ±ê×¼·½³Ì£¬¿ÉµÃµ½xºÍyµÄ¹Øϵʽ¼´µãBµÄ¹ì¼£·½³Ì
£¨3£©ÉèM£¨x0£¬y0£©£¬N£¨-x0£¬-y0£©£¬p£¨x£¬y£© °ÑÕâЩµã´úÈëÍÖÔ²µÄ±ê×¼·½³Ì£¬µÃµ½
x02
a2
+
y02
b2
=1£¬
x2
a2
+
y2
b2
=1
ºóÁ½Ê½Ïà¼õ¿ÉµÃµ½
y2-y02
x2-x02
µÄÖµ£¬È»ºó±íʾ³ökPM£¬KPNºóÏà³Ë²¢½«
y2-y02
x2-x02
µÄÖµ´úÈë¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨1£©ÓÉÓÚµã(
3
£¬
3
2
)
ÔÚÍÖÔ²ÉÏ£¬
(
3
)
2
a2
+
(
3
2
)
2
b2
=1

2a=4£¬
ÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1

½¹µã×ø±ê·Ö±ðΪ£¨-1£¬0£©£¬£¨1£¬0£©
£¨2£©ÉèKF1µÄÖеãΪB£¨x£¬y£©ÔòµãK£¨2x+1£¬2y£©
°ÑKµÄ×ø±ê´úÈëÍÖÔ²
x2
4
+
y2
3
=1
ÖеÃ
(2x+1)2
4
+
(2y)2
3
=1

Ï߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³ÌΪ(x+
1
2
)2+
y2
3
4
=1

£¨3£©¹ýÔ­µãµÄÖ±ÏßLÓëÍÖÔ²ÏཻµÄÁ½µãM£¬N¹ØÓÚ×ø±êÔ­µã¶Ô³Æ
ÉèM£¨x0£¬y0£©N£¨-x0£¬-y0£©£¬p£¨x£¬y£©
M£¬N£¬PÔÚÍÖÔ²ÉÏ£¬Ó¦Âú×ãÍÖÔ²·½³Ì£¬
µÃ
x02
a2
+
y02
b2
=1£¬
x2
a2
+
y2
b2
=1

kPM=
y-y0
x-x0
£¬KPN=
y+y0
x+x0

kPM•KPN=
y-y0
x-x0
y+y0
x+x0
=
y2-y02
x2-x02
=-
b2
a2

kPM•KPNµÄÖµÓëµãP¼°Ö±ÏßLÎÞ¹Ø
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ±ê×¼·½³ÌºÍÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌ⣮ÍÖÔ²ÔÚԲ׶ÇúÏßÖÐËùÕ¼±ÈÖØ×î´ó£¬¿¼²éµÄÒ²×î¶à£¬ÒªÇ¿»¯¸´Ï°£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
6m2
+
y2
2m2
=1
£¨m£¾0£©µÄ×ó£¬ÓÒ½¹µã£®
£¨1£©µ±P¡ÊC£¬ÇÒ
PF1
PF
2
=0
£¬|PF1|•|PF2|=8ʱ£¬ÇóÍÖÔ²CµÄ×ó£¬ÓÒ½¹µãF1¡¢F2£®
£¨2£©F1¡¢F2ÊÇ£¨1£©ÖеÄÍÖÔ²µÄ×ó£¬ÓÒ½¹µã£¬ÒÑÖª¡ÑF2µÄ°ë¾¶ÊÇ1£¬¹ý¶¯µãQµÄ×÷¡ÑF2ÇÐÏßQM£¬Ê¹µÃ|QF1|=
2
|QM|
£¨MÊÇÇе㣩£¬Èçͼ£®Ç󶯵ãQµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒÍÖÔ²ÉÏÒ»µãP(1£¬
3
2
)
µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ4£®
£¨¢ñ£©Çó´ËÍÖÔ²·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÇÒÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏß¹ý¶¨µãG(
1
8
£¬0)
£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉèF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º
x2
6m2
+
y2
2m2
=1
£¨m£¾0£©µÄ×ó¡¢ÓÒ½¹µã£®
£¨I£©µ±p¡ÊC£¬ÇÒ
pF1
pF
2
=0
£¬|
pF1
|•|
pF
2
|=4
ʱ£¬ÇóÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µãF1¡¢F2µÄ×ø±ê£®
£¨II£©F1¡¢F2ÊÇ£¨I£©ÖеÄÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬ÒÑÖª¡ÑF2µÄ°ë¾¶ÊÇ1£¬¹ý¶¯µãQ×÷µÄÇÐÏßQM£¨MΪÇе㣩£¬Ê¹µÃ|QF1|=
2
|QM|
£¬Ç󶯵ãQµÄ¹ì¼££®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
x2
b2
=1£¨a£¾b£¾0£©µÄ½¹µã£¬ÈôÍÖÔ²CÉÏ´æÔÚµãP£¬Ê¹Ï߶ÎPF1µÄ´¹Ö±Æ½·ÖÏß¹ýµãF2£¬ÔòÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÕØÇì¶þÄ££©ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×óÓÒ½¹µã£®
£¨1£©ÉèÍÖÔ²CÉϵĵã(
2
2
£¬
3
2
)
µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ2
2
£¬Ð´³öÍÖÔ²CµÄ·½³Ì£»
£¨2£©Éè¹ý£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĽ¹µãF2ÇÒбÂÊΪ1µÄÖ±ÏßÓëÆäÏཻÓÚA£¬B£¬Çó¡÷ABF1µÄÃæ»ý£»
£¨3£©ÉèµãPÊÇÍÖÔ²C ÉϵÄÈÎÒâÒ»µã£¬¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±Ö±ÏßPM£¬PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPN£¬kPNÊÔ̽¾¿kPN•kPNµÄÖµÊÇ·ñÓëµãP¼°Ö±ÏßlÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸