精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图像,如图所示,请补出完整函数f(x)的图像,并根据图像写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域.

【答案】
(1)解:因为函数为偶函数,故图像关于y轴对称,补出完整函数图像如图:

所以f(x)的递增区间是(﹣1,0),(1,+∞)


(2)解:设x>0,则﹣x<0,所以f(﹣x)=x2﹣2x,因为f(x)是定义在R上的偶函数,所以f(﹣x)=f(x),所以x>0时,f(x)=x2﹣2x,

故f(x)的解析式为

值域为{y|y≥﹣1}


【解析】(1)因为函数为偶函数,故图像关于y轴对称,由此补出完整函数f(x)的图像即可,再由图像直接可写出f(x)的增区间.(2)可由图像利用待定系数法求出x>0时的解析式,也可利用偶函数求解析式,值域可从图形直接观察得到.
【考点精析】掌握函数的值域和函数的单调性是解答本题的根本,需要知道求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的;注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数)将的图象向右平移两个单位,得到函数的图象.

(1)求函数的解析式;

(2)若方程上有且仅有一个实根,求的取值范围;

(3)若函数的图像关于直线对称,设,已知对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+a﹣2=0.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
(3)设该方程的两个实数根分别为x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界越来越关注环境保护问题,某监测站点2016年8月某日起连续天监测空气质量指数据统计如下

空气质量指

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成頻率分布直方图

(2)由頻率分布直方图求该组数据的平均数与中位数;

(3)在空气质量数分别为的监测数据中,用分层抽样的方法抽取天,从中任意选取天,求事件两天空气都为良发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的图象在点处的切线方程;

(2)当时,求证:

(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,两焦点分别为,右顶点为 .

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设过定点的直线与双曲线的左支有两个交点,与椭圆交于两点,与圆交于两点,若的面积为 ,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

同步练习册答案