精英家教网 > 高中数学 > 题目详情

【题目】如图所示的圆锥的体积为,圆的直径,点C的中点,点D是母线PA的中点.

(1)求该圆锥的侧面积;

(2)求异面直线PBCD所成角的大小.

【答案】(1); (2).

【解析】

(1)由圆锥的体积为,底面直径为,求出,从而利用圆锥侧面积公式能求出该圆锥的侧面积;(2)以为原点,轴,轴,轴,建立空间直角坐标系,求出直线的方向向量,利用空间向量夹角余弦公式能求出异面直线所成角.

(1)因为圆锥的体积为,底面直径为

所以,解得

所以,该圆锥的侧面积为.

(2)因为圆锥的体积为,底面直径为

点C是的中点,点D是母线PA的中点,

所以平面

为原点,轴,轴,轴,建立空间直角坐标系,

所以

设异面直线所成的角为,则,所以

异面直线所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为
①f(x)=2x②f(x)=3x③f(x)=x3④f(x)=x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

Ⅰ)求点的轨迹的方程;

Ⅱ)设点,过点的直线交轨迹两点,直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.
(1)求证:B1F⊥EC1
(2)求二面角C1﹣BE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABC中,,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.

(1)求证:GF∥底面ABC;

(2)求证:AC⊥平面EBC;

(3)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c三个实数成等差数列,则直线bx+ay+c=0与抛物线 的相交弦中点的轨迹方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级数学兴趣小组为了研究人的脚的大小与身高的关系,随机抽测了20位同学,得到如下数据:

序号

1

2

3

4

5

6

7

8

9

10

身高x(厘米)

192

164

172

177

176

159

171

166

182

166

脚长y(码)

48

38

40

43

44

37

40

39

46

39

序号

11

12

13

14

15

16

17

18

19

20

身高x(厘米)

169

178

167

174

168

179

165

170

162

170

脚长y(码)

43

41

40

43

40

44

38

42

39

41

(Ⅰ)请根据“序号为5的倍数”的几组数据,求出y关于x的线性回归方程
(Ⅱ)若“身高大于175厘米”为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”为“大码”,“脚长小于等于42码”的为“非大码”.请根据上表数据完成2×2列联表:并根据列联表中数据说明能有多大的可靠性认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,求:抽到“无效序号(超过20号)”的概率.
附表及公式:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位员工人参加学雷锋志愿活动,按年龄分组:第,第,,,,得到的频率分布直方图如图所示.

1)下表是年龄的频率分布表,求正整数的值;

区间






人数






2)现在要从年龄较小的第组中用分层抽样的方法抽取人,年龄在第组抽取的员工的人数分别是多少?

3)在(2)的前提下,从这人中随机抽取人参加社区宣传交流活动,求至少有人年龄在第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂第一季度某产品月生产量分别为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:万件)与月份x 的关系.模拟函数1:y=ax+ +c
;模拟函数2:y=mnx+s.
(1)已知4月份的产量为13.7 万件,问选用哪个函数作为模拟函数好?
(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.

查看答案和解析>>

同步练习册答案