精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,已知圆C:(x-2)2+(y-b)2=10,且圆C被x轴截得的弦长为2,
(1)求圆C的方程;
(2)若圆C的圆心在第一象限且直线y=kx+3(k>0)与圆C相交于A,B两点,求$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范围.

分析 (1)由题意可令y=0,解得x,可得弦长,解方程可得b,进而得到圆方程;
(2)将直线y=kx+3(k>0)和圆C:(x-2)2+(y-3)2=10联立,可得x的方程,运用判别式大于0,韦达定理及向量的数量积的坐标表示,化简整理,结合基本不等式即可得到所求范围.

解答 解:(1)圆C:(x-2)2+(y-b)2=10,且圆C被x轴截得的弦长为2,
可令y=0,解得x=2±$\sqrt{10-{b}^{2}}$,
可得2$\sqrt{10-{b}^{2}}$=2,解得b=±3,
可得圆C的方程为:(x-2)2+(y±3)2=10;
(2)由题意可得圆C:(x-2)2+(y-3)2=10,
将直线y=kx+3代入圆方程,可得(1+k2)x2-4x-6=0,
△=16+24(1+k2)>0恒成立,
设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{4}{1+{k}^{2}}$,x1x2=-$\frac{6}{1+{k}^{2}}$,
因此y1y2=(kx1+3)(kx2+3)
=k2x1x2+3k(x1+x2)+9=-$\frac{6{k}^{2}}{1+{k}^{2}}$+$\frac{12k}{1+{k}^{2}}$+9=$\frac{3{k}^{2}+12k+9}{1+{k}^{2}}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=-$\frac{6}{1+{k}^{2}}$+$\frac{3{k}^{2}+12k+9}{1+{k}^{2}}$
=$\frac{3{k}^{2}+12k+3}{1+{k}^{2}}$=3+$\frac{12k}{1+{k}^{2}}$=3+$\frac{12}{k+\frac{1}{k}}$
≤3+$\frac{12}{2\sqrt{k•\frac{1}{k}}}$=9.
当且仅当k=1取得最大值9.
则$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范围是(3,9].

点评 本题考查圆的方程的求法,考查直线和圆的位置关系,注意联立方程,运用韦达定理,同时考查向量数量积的坐标表示,以及运用基本不等式求最值,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知${x_1}={log_{\frac{1}{3}}}2$,${x_2}={2^{-\frac{1}{2}}}$,${({\frac{1}{3}})^{x3}}={log_3}{x_3}$,则(  )
A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x3<x1<x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.向量$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,($\overrightarrow{b}$-2$\overrightarrow{a}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数a,b满足2a+2b=1,则a+b的取值范围是(  )
A.(-∞,-2]B.(-∞,-1]C.(-∞,-4]D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知t>0,函数f(x)=$\left\{\begin{array}{l}x{(x-t)}^{2},x≤t\\ \frac{1}{4}x,x>t\end{array}\right.$,若函数g(x)=f(f(x)-1)恰有6个不同的零点,则实数t的取值范围是(3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.美国篮球职业联赛(NBA)某赛季的总决赛在湖人队与活塞队之间进行,比赛采取七局四胜制.即若有一队胜四场,则此队获胜且比赛结束.因两对实力非常接近,在每场比赛中每队获胜是等可能的,据资料统计,每场比赛组织者可获门票及广告收入1000万美元.求在这次总决赛过程中.
(1)比赛5局湖人队取胜的概率;
(2)比赛组织者获得门票及广告收入ξ(万美元)的概率分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为R,且f(x)>1-f′(x),f(0)=4,则不等式f(x)>1+eln3-x的解集为(  )
A.(0,+∞)B.$({\frac{1}{2},+∞})$C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了100位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.
(1)求顾客年龄值落在区间[75,85]内的频率;
(2)拟利用分层抽样从年龄在[55,65),[65,75)的顾客中选取6人召开一个座谈会,现从这6人中选出2人,求这两人在不同年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一次函数f(x)=ax+b有一个零点1,则函数g(x)=bx2-ax的零点是0,-1.

查看答案和解析>>

同步练习册答案