精英家教网 > 高中数学 > 题目详情

本题满分12分)
如图,已知矩形ABCD所在平面外一点PPA⊥平面ABCDEF分别是ABPC的中点.

(1)求证:EF∥平面PAD
(2)求证:EFCD


证明:(1)取PD的中点G,连结FG,AG
 E、F分别是AB、PC的中点
AE∥GF且AE="GF   " 四边形AEFG是平行四边形……….3分
EF∥AG 而EF平面PAD,AG平面PAD
EF∥平面PAD     ….……….6分
(2)….……….7分
而四边形ABCD是矩形   
…………………………………..9分
 ….……………………………...…….10分
        ….……….12分

解析

练习册系列答案
相关习题

科目:高中数学 来源:2014届广东汕头达濠中学高二上期末理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.

(1)求的长; (2)求cos< >的值;  (3)求证:A1B⊥C1M.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市高三九合诊断考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;

(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三上学期五调考试理科数学 题型:解答题

(本题满分12分)如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线的交点且为钝角,若

.

(1)求曲线的方程;

(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若GCD中点、HBE中点,问是否为定值?若是求出定值;若不是说明理由.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题

 

(本题满分12分)

如图3,在圆锥中,已知的直径的中点.

(I)证明:

(II)求直线和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省高二上学期第一次段考理科数学卷 题型:解答题

(本题满分12分).如图,在三棱柱ABC-中,点E,D分别是与BC的中点.

求证:平面EB//平面AD

 

查看答案和解析>>

同步练习册答案