【题目】已知﹣3≤log x≤﹣ ,求函数f(x)=log2 log2 的值域.
【答案】解:∵﹣3≤log x≤﹣ ,∴ ,
即 .
∵f(x)=log2 log2 =(log2x﹣log22)(log2x﹣log24)=(log2x﹣1)(log2x﹣2).
令t=log2x,则 ,
∴f(x)=g(t)=(t﹣1)(t﹣2)= .
∵ ,
∴f(x)max=g(3)=2, .
∴函数f(x)=log2 log2 的值域为[﹣ ,2]
【解析】由已知求得log2x的范围,把f(x)=log2 log2 转化为关于log2x的二次函数,换元后利用配方法求得函数的值域.
【考点精析】掌握三角函数的最值是解答本题的根本,需要知道函数,当时,取得最小值为;当时,取得最大值为,则,,.
科目:高中数学 来源: 题型:
【题目】已知R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,则f(2)的值为(
A.
B.2
C.
D.a2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布.现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.
(1)试评估该社区被测试的50名市民的成绩在全市市民中成绩的平均状况及这50名市民成绩在172个以上(含172个)的人数;
(2)在这50名市民中成绩在172个以上(含172个)的人中任意抽取2人,该2人中成绩排名(从高到低)在全市前130名的人数记为,求的数学期望.
参考数据:若~,则, , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面的距离
(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆: 的圆心.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线, ,当直线, 都与圆相切时,求的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +3lnax﹣x,g(x)=xex+cosx(a≠0).
(1)求函数y=f(x)的单调区间;
(2)若x1∈[1,2],x2∈[0,3],使得f( )>g(x2)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年袁隆平的超级杂交水稻再创亩产量世界纪录,为了测试水稻生长情况,专家选取了甲、乙两块地,从这两块地中随机各抽取株水稻样本,测量他们的高度,获得的高度数据的茎叶图如图所示:
(1)根据茎叶图判断哪块田的平均高度较高;
(2)计算甲乙两块地株高方差;
(3)现从乙地高度不低于的样本中随机抽取两株,求高度为的样本被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系.
(1)若曲线为参数)与曲线相交于两点,求;
(2)若是曲线上的动点,且点的直角坐标为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com