精英家教网 > 高中数学 > 题目详情
2.分母有理化$\frac{1}{\root{3}{4}+\root{3}{6}+\root{3}{9}}$=$\root{3}{3}-\root{3}{2}$.

分析 原式变形为$\frac{\root{3}{3}-\root{3}{2}}{(\root{3}{3}-\root{3}{2})(\root{3}{{2}^{2}}+\root{3}{2}•\root{3}{3}+\root{3}{{3}^{2}})}$,再利用“立方差公式”即可得出.

解答 解:原式=$\frac{\root{3}{3}-\root{3}{2}}{(\root{3}{3}-\root{3}{2})(\root{3}{{2}^{2}}+\root{3}{2}•\root{3}{3}+\root{3}{{3}^{2}})}$=$\frac{\root{3}{3}-\root{3}{2}}{3-2}$=$\root{3}{3}-\root{3}{2}$.
故答案为:$\root{3}{3}-\root{3}{2}$.

点评 本题考查了乘法公式的应用、根式的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.化简(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)(1+${2}^{-\frac{1}{8}}$)(1+${2}^{-\frac{1}{16}}$)(1+${2}^{-\frac{1}{32}}$)的结果是$\frac{1}{2-{2}^{\frac{31}{32}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一个直三棱柱的底面三边长之比为3:4:5,侧棱长为12cm,侧面积为288cm2,求该棱柱底面各边长及其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow m=(2sin(ωx+\frac{π}{3}),1)\;,\overrightarrow{\;n}=(2cosωx,-\sqrt{3})\;(ω>0)$,函数f(x)=$\overrightarrow m•\overrightarrow n$的两条相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的单调递增区间;
(2)当$α∈[\frac{π}{12},\frac{7π}{12}]$时,若f(α)=$\frac{6}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从1,3,5,7中任取3个数字,从0,2,4中任取2个数字,一共可以组成没有重复数字的五位数的个数是1248.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了计算运河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100m,AB=140m,∠BDA=60°,∠BCD=135°,则两景点B与C之间的距离为113.12(m).(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:$\sqrt{2}$=1.414,$\sqrt{3}$=1.732,$\sqrt{5}$=2.236).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c是正数,求证:a2ab2bc2c≥ab+ccc+bbc+a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,已知面ABCD是边长为4的正方形,EF∥AB,EF=2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,线段AB、CD交于点O,且$\frac{AO}{OB}$=$\frac{CO}{OD}$,用向量的运算证明AC∥DB.

查看答案和解析>>

同步练习册答案