精英家教网 > 高中数学 > 题目详情
19.如图,等腰梯形ABCD中,$\overrightarrow{AB}=2\overrightarrow{DC}$,3$\overrightarrow{AE}=2\overrightarrow{EC}$.一双曲线经过C,D,E三点,且以A,B为焦点,则该双曲线离心率是$\sqrt{7}$.

分析 可设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,由题意可得|CD|=c,设C在第一象限,由x=$\frac{c}{2}$,代入双曲线的方程,可得C的坐标,再由条件得$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{EC}$,运用向量共线的坐标表示,求得E的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.

解答 解:可设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1.
由2c=|AB|=2|CD|,可得|CD|=c,
设C在第一象限,
由x=$\frac{c}{2}$,可得y=b$\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}$,
即有C($\frac{1}{2}$c,b$\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}$),
又设A(-c,0),3$\overrightarrow{AE}=2\overrightarrow{EC}$,
可得$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{EC}$,即有E($\frac{-c+\frac{2}{3}•\frac{c}{2}}{1+\frac{2}{3}}$,$\frac{b\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}}{1+\frac{2}{3}}$),
即为(-$\frac{2}{5}$c,$\frac{2}{5}$b$\sqrt{\frac{{c}^{2}}{4{a}^{2}}-1}$),
代入双曲线的方程,可得$\frac{4}{25}$•$\frac{{c}^{2}}{{a}^{2}}$-$\frac{4}{25}$($\frac{{c}^{2}}{4{a}^{2}}$-1)=1,
由e=$\frac{c}{a}$,可得4e2-e2=21,解得e=$\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题考查双曲线的离心率的求法,注意运用向量的坐标表示,点满足双曲线的方程,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,△ABD是边长为2$\sqrt{3}$的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.
(1)求证:DE∥平面PBC;
(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P-BC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A={x|-3≤x≤a}≠∅,B={y|y=3x+10,x∈A},C={z|5-a≤z≤8}且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.王师傅为响应国家开展全民健身运动的号召,每天坚持“健步走”,并用计步器对每天的“健步走”步数进行统计,他从某个月中随机抽取10天“健步走”的步数,绘制出的频率分布直方图如图所示.
(1)试估计该月王师傅每天“健步走”的步数的中位数及平均数(精确到小数点后1位);
(2)某健康组织对“健步走”结果的评价标准为:
每天的步数分组
(千步)
[8,10)[10,12)[12,14]
评价级别及格良好优秀
现从这10天中随机抽取2天,求这2天的“健步走”结果不属于同一评价级别的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线经过点(3,-4),则此双曲线的离心率为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且cosA=$\frac{3}{5}$.
(1)求cos($\frac{π}{4}-A}$)的值;
(2)若△ABC的面积S=12,b=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设α∈$\left\{{-1,1,\frac{1}{2},\frac{2}{3}}\right\}$,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax+$\frac{4}{x}$.
(1)若连续掷两次质地均匀的骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B发生的概率.
(2)从区间(-2,2)内任取一个实数a,设事件A={方程f(x)-2=0有两个不同的正实数根},求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=cos($\frac{3π}{2}$-2x)的单调增区间是[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ],k∈Z..

查看答案和解析>>

同步练习册答案