精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)若,判断函数的单调性;

(2)证明:

(3)设 ,对,有恒成立,求的最小值.

【答案】(1)单调递增(2)见解析(3)2

【解析】

(1)计算导函数,结合导函数与原函数单调性关系,即可.(2)利用,得到 ,采用裂项相消法,求和,即可.(3)计算导函数,构造新函数,判断最小值,构造函数,计算范围,得到k的最小值,即可。

解:(1).

,因此,而

所以,故单调递增.

(2)由(1)可知时,

,则

因此

.

即结论成立.

(3)由题意知,

由于,故

时,单调递增,又

因此存在唯一零点,使,即

且当单调递减;

单调递增;

,又设

上单调递增,因此

单调递增,

所以

故所求的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

(1)讨论函数的单调性;

(2)若对任意,不等式恒成立,求实数的取值范围;

(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)证明:当a3时,函数有且只有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求不等式|x1||x2|≥5的解集;

(2)若关于x的不等式|ax2|<3的解集为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆柱底面半径为1,高为是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.

1)求曲线的长度;

2)当时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:

所用时间

10

11

12

13

通过公路1的频数

20

40

20

20

通过公路2的频数

10

40

40

10

1)为进行某项研究,从所用时间为1260辆汽车中随机抽取6辆,若用分层随机抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆:

2)若从(1)的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率;

3)假设汽车A只能在约定时间的前11h出发,汽车B只能在约定时间的前12h出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车A和汽车B应如何选择各自的道路?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形与等腰直角三角形所在的平面互相垂直. ,.

(1)求证:

(2)求证:平面平面

(3)线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于65则中二等奖,等于4则中三等奖,其余结果为不中奖.

(1)求中二等奖的概率.

(2)求不中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰中,斜边为直角边上的一点,将沿直线折叠至的位置,使得点在平面外,且点在平面上的射影在线段上设,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案