精英家教网 > 高中数学 > 题目详情
已知向量
a
b
不共线,若
AB
=λ1
a
+
b
AC
=
a
+λ2
b
,且A、B、C三点共线,则关于实数λ1、λ2一定成立的关系式为(  )
A、λ12=1
B、λ12=-1
C、λ1λ2=1
D、λ12=1
分析:先求A、B、C三点共线的充要条件,我们要先根据已知条件a、b是不共线的向量
AB
=λ1
a
+
b
AC
=
a
+λ2
b
,判断λ与μ满足的关系;并以此关系为已知条件,看能不能反推回来得到A、B、C三点共线.如果两个过程都是可以的,该关系式即为所求.
解答:解:由于
AB
AC
有公共点A,
∴若A、B、C三点共线
AB
AC
共线
即存在一个实数t,使
AB
=t
AC

λ 1=at
1=λ 2t

消去参数t得:λ1λ2=1;
反之,当λ1λ2=1时
AB
 1a+b

此时存在实数
1
λ 1
使
AB
=
1
λ 1
AC

AB
AC
共线
又由
AB
AC
有公共点A,
∴A、B、C三点共线
故A、B、C三点共线的充要条件是λ1λ2=1.
故选C.
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
不共线,且|
a
|=|
b
|,则下列结论中正确的是(  )
A、向量
a
+
b
a
-
b
垂直
B、向量
a
+
b
a
-
b
共线
C、向量
a
+
b
a
垂直
D、向量
a
+
b
a
共线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
不共线,
c
=k
a
+
b
,(k∈R),
d
=
a
-
b
如果
c
d
那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
不共线,
c
=k
a
+
b
(k∈R),
d
=
a
-
b
,如果
c
d
,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
不共线,
c
=k
a
+
b
(k∈R),
d
=
a
-2
b
,如果
c
d
,那么(  )

查看答案和解析>>

同步练习册答案