精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面是边长为的正方形,底面,四棱锥的体积的中点.

1)求异面直线所成角的大小;

2)求点到平面的距离.

【答案】1;(2.

【解析】

1)连接交于点,连接,利用中位线的性质得出,可得出异面直线所成角为或其补角,先由锥体的体积公式计算出,并证明出,然后利用锐角三角函数求出,由此可得出异面直线所成角的大小;

2)过点在平面内作,证明平面,并证明出平面,由此可得出点到平面的距离等于,然后利用等面积法计算出即可.

1)连接交于点,连接,则的中点,

底面,且底面是边长为的正方形,底面积为

,解得.

分别为的中点,

所以,异面直线所成角为或其补角,

四边形是正方形,则

底面平面

平面

平面,即

中,

因此,异面直线所成角的大小为

2)过点在平面内作

底面平面

四边形是正方形,则平面

平面,又平面

平面平面平面

所以,点到平面的距离等于

中,,由勾股定理得

由等面积法得.

因此,点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的偶函数,且,当时,,则在区间内关于的方程解得个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美、寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:

①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);

②曲线C上任意一点到原点的距离都不超过

③曲线C所围成的“心形”区域的面积小于3.

其中,所有正确结论的序号是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(1)当时,证明:函数只有一个零点;

(2)若函数存在两个不同的极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当,函数图象上是否存在3条互相平行的切线,并说明理由?

(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a为实数

求函数的单调区间;

若存在实数a,使得对任意恒成立,求实数m的取值范围.提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,若恒成立,则实数的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为.

)求椭圆的标准方程;

)设直线与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的3倍,求的值.

查看答案和解析>>

同步练习册答案