精英家教网 > 高中数学 > 题目详情
在四棱锥中,底面是直角梯形,,∠,平面⊥平面.

(1)求证:⊥平面
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
(Ⅰ)因为 ,所以.因为 平面平面,平面平面平面,所以 平面;(Ⅱ) ;(Ⅲ)解:在棱上存在点使得∥平面,此时.

试题分析:(Ⅰ)证明:因为
所以 .                        ………………………………………1分
因为 平面平面,平面平面
平面
所以 平面.                  ………………………………………3分
(Ⅱ)解:取的中点,连接.
因为
所以 .
因为 平面平面,平面平面平面
所以 平面.                ………………………………………4分
如图,

为原点,所在的直线为轴,在平面内过垂直于的直
线为轴,所在的直线为轴建立空间直角坐标系.不妨设.由
直角梯形可得
.
所以 .
设平面的法向量.
因为
所以

,则.
所以 .                 ………………………………………7分
取平面的一个法向量n.
所以 .
所以 平面和平面所成的二面角(小于)的大小为.
………………………………………9分
(Ⅲ)解:在棱上存在点使得∥平面,此时. 理由如下:…………10分
的中点,连接.
.

因为
所以 .
因为
所以 四边形是平行四边形.
所以 .
因为
所以 平面∥平面.           ………………………………………13分
因为 平面
所以 ∥平面.               ………………………………………14分
点评:本题主要考查线面关系的判定及二面角的求法,考查空间想象能力与逻辑思维能力,对于立体几何问题的证明问题,要求我们熟练应用课本上的定理、性质、结论等,要求会用几何法和向量法两种方法求解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。

(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.

(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab表示两条不同直线,α、β表示两个不同平面,则下列命题正确的是(    
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线,两个平面,给出下面四个命题:
或者相交


或者
其中正确命题的序号是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线m,n与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.
其中真命题的个数是______个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图在三棱锥中,E?F是棱AD上互异的两点,G?H是棱BC上互异的两点,由图可知

①AB与CD互为异面直线;②FH分别与DC?DB互为异面直线;
③EG与FH互为异面直线;④EG与AB互为异面直线.
其中叙述正确的是 (    )
A.①③B.②④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在□ABCD中,∠DAB=60°,AB=2,AD="4." 将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求证:AB⊥DE;
(2)求三棱锥E—ABD的侧面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A-BCD是各条棱长都相等的三棱锥.,那么AB和CD所成的角等于_______。

查看答案和解析>>

同步练习册答案