精英家教网 > 高中数学 > 题目详情
在直角梯形中,,如图,把沿翻折,使得平面平面

(1)求证:
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.
(1)证明过程详见解析;(2)  (3)存在

试题分析:
(1)据题意,要证明,由线面垂直的性质例一得到只需要证明DC面ABD,又有面ABD与面BCD垂直,故根据面面垂直的性质,只需要证明DC垂直于面ABD与面BCD的交线BD,DC与BC垂直的证明可以放在直角梯形中利用勾股定理与余弦定理证明,三角形BCD为直角三角形.
(2)由(1)得平面,所以.以点为原点,所在的直线为轴,所在直线为轴,利用三维空间直角坐标系即可求的点面距离,即首先求出线段MC与面ADC的法向量的夹角,再利用三角函数值即可求的点面距离.此外,该题还可以利用等体积法来求的点面距离,即三棱锥M-ADC的体积,分别以M点为顶点和以A点为定点来求解三棱锥的体积,解出高即为点面距离.
(3)该问利用坐标法最为简洁,在第二问建立的坐标系的基础上,设,,利用来表示N点的坐标,求出面ACD的法向量,法向量与AN所成的夹角即为与平面所成角为的余角,利用该条件即可求出的值,进而得到N点的位置.
试题解析:
(1)证明:因为
,所以                      1分
,  2分
 ,所以        3分.
因为平面平面,平面平面
所以平面                      4分.
平面,所以          5分.

(2)解法1:因为平面,所以.以点为原点,所在的直线为轴,所在直线为轴,过点作垂直平面的直线为轴,建立空间直角坐标系,如图.由已知,得.所以.  7分.设平面的法向量为,则,所以,得平面的一个法向量为   9分
所以点到平面的距离为         10分.
解法2:由已知条件可得,所以
由(1)知平面,即为三棱锥的高,
,所以          7分.
平面得到,设点到平面的距离为
                8分.
所以,                          9分.
因为点为线段中点,所以点到平面的距离为  10分.
解法3:因为点为线段的中点,所以点到平面的距离等于点到平面的距离的.  6分 由已知条件可得,由(I)知,又
所以平面,                             8分
所以点到平面的距离等于线段的长.       9分
因为,所以点到平面的距离等于.  10分
(3)假设在线段上存在点,使得与平面所成角为  11分.
,,则,所以.                              12分 
又平面的一个法向量为,且直线与平面所成的角为
所以, 即
可得, 解得(舍去).   13分
综上所述,在线段上是否存在点,使得与平面所成角为
此时.      14分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在圆锥PO中,已知PO=,☉O的直径AB=2,C是的中点,D为AC的中点.

求证:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1

(1)若点E在SD上,且证明:平面
(2)若三棱锥S-ABC的体积,求面SAD与面SBC所成二面角的正弦值的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥PABCD的底面ABCD为一直角梯形,其中BAADCDADCDAD=2ABPA⊥底面ABCDEPC的中点.
 
(1)求证:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCDGH分别是CECF的中点.

(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )
A.(,,)B.(,,)
C.(,,)D.(,,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点与点,则线段之间的距离是             

查看答案和解析>>

同步练习册答案