精英家教网 > 高中数学 > 题目详情
(2013•泰安一模)已知函数f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(I)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(II)当a=0时,是否存在实数m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.
分析:(1)由题意,函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减且满足f(0)=1,f(1)=0,可求出函数的导数,将函数在[0,1]上单调递减转化为导数在[0,1]上的函数值恒小于等于0,再结合f(0)=1,f(1)=0这两个方程即可求得a取值范围;
(II)当a=0时,若mx+1≥-x2+4x+1得,由二次函数知识求得m=4,在证明当m=4时,2f(x)+4xex≥mx+1对任意x∈R恒成立,g(x)=(2x+2)ex-4x-1,只需g(x)>0即可.
解答:解:(1)由f(0)=1,f(1)=0得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]ex
∴f′(x)=[ax2+(a-1)x-a]ex
由题意函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减可得对于任意的x∈(0,1),都有f′(x)<0
当a>0时,因为二次函数y=ax2+(a-1)x-a图象开口向上,而f′(0)=-a<0,所以只需要f′(1)=(a-1)e<0,即a<1,故有0<a<1;
当a=1时,对于任意的x∈(0,1),都有f′(x)=(x2-1)ex<0,函数符合条件;
当a=0时,对于任意的x∈(0,1),都有f′(x)=-xex<0,函数符合条件;
当a<0时,因f′(0)=-a>0函数不符合条件;
综上知,a的取值范围是0≤a≤1

(II)当a=0时,f(x)=(1-x)ex,假设存在实数m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立,

由mx+1≥-x2+4x+1得,x2+(m-4)x≥0恒成立,∴△=(m-4)2≤0,∴m=4.
下面证明:当m=4时,2f(x)+4xex≥mx+1对任意x∈R恒成立,即(2x+2)ex≥4x+1对任意x∈R恒成立,
令g(x)=(2x+2)ex-4x-1,g′(x)=(2x+4)ex-4,∵g′(0)=0,
当x>0时,2x+4>4,ex>1,∴(2x+4)ex>4,g′(x)>0,g(x)在(0,+∞)上单调递增,

当x<0时,2x+4<4,0<ex<1,∴(2x+4)ex<4,g′(x)<0,g(x)在(-∞0,)上单调递减,

∴g(x)min=g(0)=1>0,∴g(x)>0,即(2x+2)ex≥4x+1对任意x∈R恒成立.

综上所述,实数m=4使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立.
点评:本题考查利用导数求函数在闭区间上的最值,利用导数研究函数的单调性,此类题解题步骤一般是求导,研究单调性,确定最值,求最值,解题的关键是把函数在闭区间上递减转化为函数的导数在此区间上小于等于0恒成立,将单调递减的问题转化为不等式恒成立是此类题常用的转化思路,第二小题求恒成立参数的取值范围,本题考查了转化的思想,推理判断的能力,计算量大,难度较大,极易因为判断不准转化出错或计算出错,常作为高考的压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•泰安一模)已知集合A={-1,1},B={x|1≤2x<4},则A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安一模)设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安一模)若a,b∈R,且ab>0,则下列不等式中,恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安一模)某产品按行业生产标准分成6个等级,等级系数ξ依次为1,2,3,4,5,6,按行业规定产品的等级系数ξ≥5的为一等品,3≤ξ<5的为二等品,ξ<3的为三等品.
若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下;

(I)以此30件产品的样本来估计该厂产品的总体情况,试分别求出该厂生产原一等品、二等品和三等品的概率;
(II)已知该厂生产一件产品的利润y(单位:元)与产品的等级系数ζ的关系式为y=
1,ξ<3
2,3≤ξ<5
4,ξ≥5
,若从该厂大量产品中任取两件,其利润记为Z,求Z的分布列和数学期望.

查看答案和解析>>

同步练习册答案