精英家教网 > 高中数学 > 题目详情

【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查50人,并将调查情况进行整理后制成如表:

年龄(岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,60)

频数

10

10

10

10

10

赞成人数

3

5

6

7

9


(1)世界联合国卫生组织规定:[15,45)岁为青年,(45,60)为中年,根据以上统计数据填写以下2×2列联表:

青年人

中年人

合计

不赞成

赞成

合计


(2)判断能否在犯错误的概率不超过0.05的前提下,认为赞成“车柄限行”与年龄有关? 附: ,其中n=a+b+c+d
独立检验临界值表:

P(K2≥k)

0.100

0.050

0.025

0.010

k0

2.706

3.841

5.024

6.635


(3)若从年龄[15,25),[25,35)的被调查中各随机选取1人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为ξ,求随机变量ξ的分布列和数学期望Eξ.

【答案】
(1)解:根据题目中的数据,填写列联表如下;

青年人

中年人

合计

不赞成

16

4

20

赞成

14

16

30

合计

30

20

50


(2)解:由(1)表中数据计算得

对照临界值得P(K2≥3.841)≈0.05,

因此,在犯错误的概率不超过0.05的前提下,认为赞成“车辆限行”与年龄有关


(3)解:根据题意,ξ的可能取值为0,1,2;

计算

所以随机变量ξ的分布列为:

ξ

0

1

2

P

所以数学期望为


【解析】(1)根据题目中的数据,填写列联表即可;(2)由(1)表中数据计算观测值,对照临界值得出结论;(3)根据题意知ξ的可能取值,求出对应的概率值,写出随机变量ξ的分布列,计算数学期望值.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行一次如图所示的程序框图,若输出i的值为0,则下列关于框图中函数f(x)(x∈R)的表述,正确的是(
A.f(x)是奇函数,且为减函数
B.f(x)是偶函数,且为增函数
C.f(x)不是奇函数,也不为减函数
D.f(x)不是偶函数,也不为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若1

A. logab>logba B. |logab+logba|>2

C. (logba)2<1 D. |logab|+|logba|>|logab+logba|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三角形ABC中,AB<AC,∠BAC=90°,边AB,AC的长分别为方程 的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tanθ的取值范围为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某店销售进价为2元/件的产品,该店产品每日的销售量(单位:千件)与销售价格(单位:元/件)满足关系式,其中.

(1)若产品销售价格为4元/件,求该店每日销售产品所获得的利润;

(2)试确定产品的销售价格,使该店每日销售产品所获得的利润最大.(保留1位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当m=1时,求证:对x∈[0,+∞)时,f(x)≥0;
(2)当m≤1时,讨论函数f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;

(2)求过点的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,且过点M(4,1). (Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m(m≠﹣3)与椭圆C交于P,Q两点,记直线MP,MQ的斜率分别为k1 , k2 , 试探究k1+k2是否为定值.若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案