精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=-1,an+1=Sn+3n-1(n∈N*
①求数列{an}的通项公式
②若bn=3n+(-1)n-1•λ•(an+3)(λ为非零常数),问是否存在整数λ使得对任意n∈N*都有bn+1>bn?若存在,求出λ的值;若不存在,请说明理由.
分析:①由已知,得an=Sn-1+3n-4(n≥2),利用an与sn的关系,两式相减,an+1+3=2(an+3)(n≥2),初步判断新数列{an+3}具有等比数列的性质,再考虑n=1的情形.
②写出数列{bn}的通项,首先假设存在λ使得满足题意,然后计算化简bn+1-bn,再结合恒成立问题进行转化,将问题转化为:(-1)n-1•λ<(
3
2
)
n-1
对任意的n∈N*恒成立.然后分n为奇偶数讨论即可获得λ的范围,再结合为整数即可获得问题的解答.
解答:解:(1)由an+1=Sn+3n-1(n∈N*)①
得an=Sn-1+3n-4(n≥2)②
①-②得an+1=2an+3(n≥2)
∴an+1+3=2(an+3)(n≥2)
又由②得 a2=S1+6-4=a1+2=1
∴a2+3=4
∴a2+3=2(a1+3)
∴an+1+3=2(an+3)(n≥1)
∴数列{an+3}是首项为2,公比为2的等比数列
∴an+3=2×2n-1=2n
∴数列{an}的 an=2n-3(n≥1)
(2)由(1)可得  bn=3n+(-1)n-1•λ•2n
bn+1=3n+1+(-1)n•λ•2n+1
要使bn+1>bn恒成立,只需bn+1-bn=2•3n-3λ•(-1)n-1•2n>0恒成立,
λ•(-1)n-1<(
3
2
)n-1
恒成立
当n为奇数时,λ<(
3
2
)n-1
恒成立   而(
3
2
)n-1
的最小值为1∴λ<1(10分)
当n为偶数时,λ>-(
3
2
)n-1
恒成立  而-(
3
2
)n-1
最大值为-
3
2
λ>-
3
2
(12分)
即λ的取值范围是1>λ>-
3
2
,且λ≠1
又λ为整数.
∴存在λ=-1或0,使得对任意n∈N*都有bn+1>bn
点评:本题考查的是数列与不等式的综合题.在解答的过程当中充分体现了等比数列的定义、an与sn的关系、分类讨论的知识以及恒成立问题的解答规律.同时务必注意化简计算的准确性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}是等差数列;
(Ⅲ)设cn=
3
bnbn+1
,Sn是数列{cn}的前n项和,求使Sn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想数列{an}的通项公式an的表达式;
(2)用适当的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的个位数(n∈N*),若数列{an}的前k项和为2011,则正整数k之值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)记bn=(an-
1
2
2,n∈N+,求证:数列{bn}是等差数列;
(2)求{an}的通项公式;
(3)对?k∈N+,是否总?m∈N+使得an=k?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)计算a2,a3
(Ⅱ)求证:{
an-
1
2
3n
}是等差数列;
(Ⅲ)求数列{an}的通项公式an及其前n项和Sn

查看答案和解析>>

同步练习册答案