精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的前n项和为Sn,且a2=1,S11=33.
(1)求{an}的通项公式;
(2)设数学公式,求证:{bn}是等比数列.

解:(1)依题意有
解之得

(2)由(1)知,



∴{bn}构成以为首项,公比为的等比数列.
分析:(1)分别利用等差数列的通项公式及等差数列的前n项和的公式由a2=1,S11=33表示出关于首项和公差的两个关系式,联立即可求出首项与公差,即可得到数列的通项公式;
(2)根据(1)求出的首项与公差,欲证明:{bn}是等比数列,只须利用等比数列的定义进行证明即可.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式,灵活运用等比关系的确定的方法解决问题,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案