精英家教网 > 高中数学 > 题目详情

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).

当r=0.4时,S有最大值0.48π,约为1.51平方米.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分6分,第2个小题满分8分。
已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试证函数内存在零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
 ;       ②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象关于坐标原点对称。
(1)求的值,并求出函数的零点;
(2)若函数在[0,1]内存在零点,求实数b的取值范围;
(3)设,已知的反函数=,若不等式上恒成立,求满足条件的最小整数k的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若上存在零点,求实数的取值范围;
(2)当时,若对任意的,总存在使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校拟建一块周长为400m的操场,如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,判断的单调性,并用定义证明.
(2)若对任意,不等式恒成立,求的取值范围;
(3)讨论零点的个数.

查看答案和解析>>

同步练习册答案